

 —
layout: default
—

Enterprise Information Security
Infosec assists Mozillians in defining and operating security controls to ensure that data at Mozilla is protected consistently across the organization.

	we help you define the risks around your services and data

	we help projects design and implement security controls

	we maintain a risk-based inventory of systems and their functional security controls to help Mozilla management determine where to invest in security measures

	we develop a catalog of services and tools that help you appropriately secure your data

	we respond to security investigations and incidents

	we provide baseline practices and assist teams in defining their security standards

Documentation

{% include_relative guidelines/index.md %}
{% include_relative fundamentals/index.md %}

Contact
Email us: infosec [at] mozilla.com. For confidential information, encrypt your email using [our public PGP key](https://gpg.mozilla.org/pks/lookup?op=get&search=0x85D77543B3D624B63CEA9E6DBC17301B491B3F21). Our full fingerprint is 0x85D77543B3D624B63CEA9E6DBC17301B491B3F21

For security incidents, file a bug in Bugzilla under the product/component [investigation](https://bugzilla.mozilla.org/enter_bug.cgi?product=Enterprise%20Information%20Security&component=Investigation) or [incidents](https://bugzilla.mozilla.org/enter_bug.cgi?product=Enterprise%20Information%20Security&component=Incident).

Our IRC channel is [#infosec](irc://irc.mozilla.org/infosec) or [#security](irc://irc.mozilla.org/security) at irc.mozilla.org.

Members

	Jeff Bryner [:jeff]
- Guillaume Destuynder [🐦](https://twitter.com/kangsterizer) [💻](https://github.com/gdestuynder/) [:kang]
- Gene Wood [:gene]
- April King [:April]
- Andrew Krug [:andrew]
- Justin Dow [:jabba]
- Jonathan Claudius [:claudijd]
- Caglar Ulucenk [:Cag]
- Tristan Weir [:weir]

	Alicia Smith [:phrozyn]

	Brandon Myers [:pwnbus]

	Lucius Bono [:lucius]

	Michal Purzynski [:michal`]

	Zack Mullaly [:zack]

Index

Fundamentals

 {% for page in site.pages %}
 {% if page.resource == true %}
 {% for pc in page.categories %}
 {% if pc == 'Fundamentals' %}
 	{{ page.title }} {{ page.description }}

 {% endif %}
 {% endfor %}
 {% endif %}
 {% endfor %}

layout: default
resource: true
categories: [Fundamentals]
title: Rationales
description: Explains and justifies the use of specific controls, principles

The goal of this document is to detail the rationales behind why various technologies and processes are encouraged or discouraged.
All Mozilla sites and deployment should follow the recommendations below.
The Enterprise Information Security (Infosec) team maintains this document as a reference guide.

Rationales

	Topic

	Rationale

	§ Shared passwords and accounts

	Shared passwords are passwords or/and accounts that more than one person knows or has access to. They're discouraged because:

	 Use of them makes auditing access difficult:

	 multiple users appear in audit logs as one user and different users actions are difficult to differentiate.

	 the number of audit logs that need to be searched increases.

	 correlation of events across different systems is impossible if multiple people are creating event records with a single shared account across multiple systems at the same time.

	 Revoking access to a subset of the users of a shared password requires a password change that affects all users.

	§ Password reuse

	Password reuse is the practice of a single user using the same password across multiple different accounts/sites. This is contrasted with creating a different, distinct password for every account/site. Users often employ hybrid forms of password reuse like

	 Using the same password for a class of accounts/sites, for example, using one single password for multiple high value financial accounts, but a different single password for multiple low value forums and wikis.

	 Using a consistent reproducible method of password generation for each site, for example, every account/site has a password which begins with the same characters and ends with name of the site ("rosebud0facebook", "rosebud0linkedin")

Password reuse is discouraged because:

	 When a site is compromised by an attacker, the attacker can easily take the user's password that has been reused on other sites and gain access to those other sites. For example if a user uses the same password on a car forum website as they use on Facebook, when that car website gets compromised, the attackers can then takeover the user's Facebook account.

	 Unethical administrators of any sites where a password is reused may/can gain access to accounts using the reused password.

Note that it is dangerous for a user to rely on a site being able to effectively prevent an attacker from obtaining that user's password once an attacker has compromised the site.

Since it's difficult/impossible for a user to memorize a distinct password for every account/site, a common solution is to use a password manager.

	§ Decentralized user account management

	Decentralized user account management refers to user account management which is not driven by the source of truth for the user's account. Examples of this are:

	 Manual user account creation by administrators.

	 Automated user account creation from scripting or configuration management that creates accounts based on a static list of users.

This practice is discouraged because:

	 When a user's access status changes due to leaving the company or changing teams, the associated change in the system which uses decentralized user account management is not automatically made resulting in unintended system access.

	 When a user changes an attribute of their account in the centralized account management system, for example their email address or password, that change is not reflected in the systems which use decentralized user account management. Conversely when the user changes an attribute in the systems which use decentralized user account management, that change is not propagated to the centralized account management system.

	§ Multi-factor Authentication

	Multi-factor authentication (MFA) is a security system that requires more than one method of authentication from independent categories of credentials to verify the user's identity for a login or other transaction.
Requiring the use of MFA for internet accessible endpoints is encouraged because by requiring not only something the
user knows (a knowledge factor like a memorized password) but also something that the user has (a possession factor like
a smartcard, yubikey or mobile phone) the field of threat actors that could compromise the account is reduced to actors
with physical access to the user.

In cases where the possession factor is digital (a secret stored in your mobile phone) instead of physical (a smartcard
or yubikey), the effect of MFA is not to reduce the field of threat actors to only those that have physical access to
the user, because a secret can be remotely copied off of a compromised mobile phone. Instead, in this case, the
possession factor merely makes it more difficult for the threat actor since they now need to brute force/guess your
password and compromise your mobile phone. This is, however, still possible to do entirely from a remote location.
In particular, storing both first on second factor on the same device (for example: mobile phone) is strongly discouraged.

	§ Network Security Monitoring

	Network Security Monitoring (NSM) is the practice of monitoring raw network traffic in order to detect intrusions or abnormal behavior. The use of NSM is encouraged because it can:

	 identify when a host has been compromised by the network traffic it emits.

	 understand the commonalities in a distributed network attack.

	 provide incident responders with data needed to quickly diagnose security issues.

layout: default
resource: true
categories: [Fundamentals]
title: Security Principles
description: Most important security principles to follow - the baseline

This document defines a set of security principles that all operational groups at Mozilla must follow. The principles
are designed to reduce the exposure of our systems and services from attackers who could gain privileged access and
compromise sensitive data. The Firefox Operations Security [https://wiki.mozilla.org/Security/FirefoxOperations] and
the Enterprise Information Security [https://infosec.mozilla.org/] teams maintain the list of principles, and work with
operational teams throughout Mozilla to ensure their implementation.

NOTE: The “do” and “do not” used in this document are example of controls or implementation of the
principles, but do not represent an exhaustive list of possibilities. Mozilla teams may also find example violations
here [https://docs.google.com/document/d/1g6srH_oOvDH9u207VW_sIlgxkJwjPufqCCczWVkM6w4].

Least Privilege

Do not expose unnecessary services

Goal: Limiting the amount of reachable or usable services to the necessary minimum.

Do

	List all services presented to the network (Internet and Intranets). Justify the presence of each port or service.

Do not

	OpenSSH Server (sshd) is running but no users ever login.

	A web-application has a web accessible administration interface, but it is not used.

	A database server (SQL) allows connections from any machine in the same VLAN, even though only a single machine
needs to access it.

	The administration login panel of the network switch for the office network is accessible by users of the office
network.

Do not grant or retain permissions that are no longer needed

Goal: Expire user access to data or services when users no longer need them.

Do

	Use role-based access control (allows for easy granular escalation of privileges, only when necessary)

	Expire access automatically when unused.

	Automatically disable API keys after not having been used for a given period of time and notify the user.

	Use different accounts for different role types (admin, developer, user, etc.) when no good role-based access
control is available.

	Routinely review user’s access permissions to ensure they’re still needed.

Do not

	Grant global root access (e.g. via ‘sudo’) for all operation engineers on all systems.

	Give access “just in case”.

	Retain access to services that you no longer use.

Defense in Depth

Do not allow lateral movement

Goal: Make it difficult or impossible for an attacker to move from one host in the network to another host.

Do

	Prevent inbound network access to services on a host from clients that do not need access to the service through
either host-based firewall rules, network firewall rules/AWS security groups, or both (which is preferred).

	Clearly enforce which teams have access to which set of systems.

	Alert on network flows being established between difference services.

Do not

	Allow inbound OpenSSH, RDP connections from any host on any network.

	Run unpatched container management services (e.g. Docker) or kernels which allow a user in one container to escape
the container and affect other containers on the same host.

Isolate environments

Goal: Separating infrastructure and services from each other in order to limit the the impact of a security breach.

Do

	In cases where two distinct systems are used to govern access or authorization (e.g. Okta and Duo), ensure that no
single user or role has administrative permissions across both systems.

	Use separate sets of credentials for different environments.

Do not

	Have system administrators with access to every system/every service.

	Establish service users with access to multiple services.

	Allow tools remotely executing code on systems from a centralized location (single Puppet Master, Ansible Tower,
Nagios, etc. instance) across multiple services.

	Re-use functionality across services when not required (such as sharing load balancers, databases, etc.)

Patch Systems

Goal: Ensuring systems and software do not contain vulnerabilities when these are found in software over time.

Do

	Establish regular recurring maintenance windows in which to patch software.

	Ensure individual systems can be turned off and back on without affecting service availability.

	Enable automatic patching where possible.

	Check web application libraries and dependencies for vulnerabilities.

Meet Web Standards

Goal: Reduce exposure to web attacks by following the web security standards.

Do

	Achieve B+ or higher on Mozilla’s Observatory [https://observatory.mozilla.org].

	Follow the Web Security Guidelines.

Guarantee data integrity and confidentiality

Goal: Ensuring data confidentiality, integrity, and authenticity is respected throughout its lifecycle.

Do

	Use full-disk encryption where available on systems without physical security (laptops and mobile phones).

	Encrypt credentials storage databases (Ansible Vault, Credstash, etc.)

	Encrypt data in transit with TLS (during transmission).

	Also encrypt data in transit inside the internal network.

Do not

	Terminate TLS (e.g. with a reverse proxy or load balancer) outside a system and then transmit the data in clear-text
across the rest of the network.

	Use STARTTLS without also disabling clear-text connections.

Know Thy System

Fraud detection and forensics

Goal: Inspect events in real-time in order to alert on suspicious behavior, and store system behavior information in
order to retrace actions after a security breach.

Do

	Audit and log system calls (e.g. with auditd or Windows Audit) made by processes when running in an operating system
you control (e.g. not AWS Lambda)

	Send logs off the account or system (e.g. AWS CloudTrail, system logs, etc.) outside of the account or system
(different AWS account, MozDef, Papertrail, etc.)

	Detect and alert on anomalous changes.

Are you at risk?

Goal: Assessing how exposed you are to danger, harm or loss.

Do

	Run Rapid Risk Assessments (RRA) [https://wiki.mozilla.org/Security/Risk_management/Rapid_Risk_Assessment]
for your services.

	Estimate what would be the impact if your service was compromised.

Do not

	Think it will never happen to you.

Inventory the Landscape

Goal: Provide an accurate, maintained catalog, or system of records for all assets.

Do

	Keep an inventory of services and service owners.

	Keep an inventory of machines (e.g. ServiceNow, AWS Config, Infoblox, etc.) which is updated automatically.

	Ensure that the inventory contains IP addresses of systems in particular when using IPv6 (which cannot realistically
be scanned).

KISS - Keep It Simple and thus Secure

Goal: KISS comes from ‘Keep It Simple, Stupid’ [https://en.wikipedia.org/wiki/KISS_principle]. You can only secure
a system that you can completely understand.

Do

	Keep things simple. Prefer simplicity over a complex and specific architecture.

	Ensure others can understand the design.

	Use standardized tooling that others already know how to use.

	Draw high-level data flow diagrams.

Authentication and authorization

Require two-factor authentication

Goal: Require 2FA (or MFA) on all services internal or external to prevent attackers from reusing or guessing a
single credential such as a password.

MFA (multi-factor authentication, also called 2FA for two-factors) is method of confirming a user’s claimed identity by
utilizing a combination of two different components such as something you know (password) and something you have
(phone).

See also why: Rationales#mfa.

Do

	Use an SSO (Single Sign On) solution with MFA.

	For services that can not support SSO, use the service’s individual MFA features (e.g. GitHub and Google MFA).

	Servers carrying secrets or widespread access (or any other potentially sensitive data) should verify the user’s
identity end to end, such as by prompting for an additional MFA verification when connecting to the server, even
when behind a bastion host.

Use central identity management (Single Sign-On)

Goal: Minimize credential theft and identity mismanagement by minimizing the handling of user credentials such as
password, MFA to a set of dedicated systems.

Do

	Use an SSO (Single Sign-On) solution that authenticates users credentials on your service’s behalf.

	Servers update their user sessions from the SSO systems regularly to ensure the user is still active and valid.

	Use authorization (e.g. group membership) data from the SSO system (possibly, in addition to your own authorization
data)

Do not

	Accept, process, transmit or store user credentials (passwords, OTPs, keys, etc.) Let the authentication server
directly handle that data.

	Use direct LDAP authentication for users.

See also why: Rationales#decentralized-user-account-management.

Require strong authentication

Goal: Use credential-based authentication and user session management to grant access.

See also why: Rationales#shared-passwords,
Rationales#password-reuse.

Do

	Use credential-based authentication and user session management where the session information is passed by the user
(https://research.google.com/pubs/pub44860.html)

	Use API keys for service authentication.

	Prefer using asymmetric API keys with request signing (e.g. x509 client certificates, AWS Signature) over symmetric
API keys (e.g. HTTP header) where possible.

	Ensure that API keys can be automatically rotated in the case of a data leak.

	Use a password manager to store distinct passwords for each service a user accesses.

	Use purpose-built credential sharing mechanisms when sharing is required (1password for teams, LastPass, etc.)

Do not

	Use easy to guess passwords or vendor default passwords.

	Send your password to other individuals.

	Send shared passwords over email or communication mediums other than purpose-built credential sharing mechanisms.

	Use the same password for multiple services.

	Trust traffic from a certain network address.

	Rely on VLANs or AWS VPCs to indicate requests are safe.

	Use IP ACLs as replacement for authentication.

	Trust the office network for access to devices.

	Use TCP Wrapper [https://en.wikipedia.org/wiki/TCP_Wrapper] for access control.

	Use machine API keys for user authentication.

	Use user credentials for machine authentication.

	Store API keys on devices that are not physically secure (e.g. laptops or mobile phones)

NOTE: The “do” and “do not” used in this document are example of controls or implementation of the
principles, but do not represent an exhaustive list of possibilities. Mozilla teams may also find example violations
here [https://docs.google.com/document/d/1g6srH_oOvDH9u207VW_sIlgxkJwjPufqCCczWVkM6w4].

layout: default
resource: true
categories: [Guidelines,Risk]
title: Assessing Security Risk
description: An open framework to assess security risk from an operational perspective

The goal of these documents is to help you understand how Mozilla’s Security team risk framework is utilized. It also
aims to help create your own framework when official standards are too inflexible or convoluted to implement. Most of
Mozilla’s framework is inspired by ISO 31000 [https://www.iso.org/iso/home/standards/iso31000.htm] and ISO
27001 [https://en.wikipedia.org/wiki/ISO/IEC_27001] and other well-known prior efforts

It is recommended to read the FAIR Introduction [https://web.archive.org/web/20141118061526/http://www.riskmanagementinsight.com/media/docs/FAIR_introduction.pdf]
as an introduction to how risk is generally assessed, and get familiar with the terms. Note that we do not use the FAIR
methodology, however, the concepts are well exposed in their documentation

What is risk?

Risk is commonly defined as: risk = impact * likelihood

Where:

	Impact (also called risk impact) defines ‘how bad’ things can get, the worst-case scenario.

	Likelihood defines the probable frequency, or rate at which the impacts we assessed may occur.

Risk impact

Assessing impact is a relatively finite, quantitative exercise. When imagining a threat scenario, attacks, etc. we can
define the maximum amount of how much money we might lose, or how badly our reputation would be damaged, how many
employees would be unable to work, etc.

Risk impact generally does not change quickly over time unless services and products are redesigned, large features are
added, new types of data is processed, etc.

A note on “probable worse-case impact”:
We tend to assess what is often called the “reasonable worse-case impact” or “probable worse-case impact”, i.e., ruling
out overly unrealistic scenarios such as “what if an asteroid the size of a city hits the planet” or “what if 4
differently located data-center catch fire”, etc.

Risk likelihood

Likelihood is defined by the frequency at which the assessed impacts may occur. Unlike assessing impacts, this can be
difficult and frustrating. Given an existing vulnerability, how do you assess if it’s going to be exploited? There are
several methods, many of which qualitative with various degree of accuracy.

Likelihood is volatile and changes quickly over time. New vulnerabilities are discovered daily, and the environment in
which services are setup evolves, is reconfigured, changed constantly.

In short, while more difficult, assessing likelihood with some degree of accuracy is key to a assessing risk.

Risk Framework

RRA: Rapid Risk Assessment (risk impact analysis)

We analyze and assess risk with a lightweight threat model we call the RRA (Rapid Risk Assessment). It consists of a
30-60min discussion with involved parties that is service based.

Each service is assessed from a high level perspective, and sometimes the threat model it extended and completed with
details, or shortened when not necessary. The RRA allows us to right-size risk assessments quickly and efficiently -
striking the right balance is paramount when hundred of services and vendors are used day to day.

Despite it’s name, the RRA mainly focuses on assessing risk impact and only partially covers risk likelihood (such as by
recording the frequency at which bad impacts occurred in the past, if any).

	RRA: Rapid Risk Assessment manual

Likelihood indicators

We utilize what we call likelihood indicators in order to assess the probably for an impact to occur.
Different scanners, such as the Mozilla Observatory [https://observatory.mozilla.org], internal vulnerability scanners,
bug metrics, etc. emit short and lightweight JSON documents that contain an indicator of how likely an event or finding
is to contribute to the likelihood for a service to be attacked successfully.

	How to use, generate and understand likelihood indicators

Service mapper

The service mapper is an API that collects RRA and likelihood indicator data. It calculates various scenarios based on
the risk = impact * likelihood formula, with some tweaks depending on the scenario being calculated.

The amount of indicators and the scenarios output allow machines and humans to quickly interpret the data and figure out
if a service or asset risk is increasing or decreasing over time. Alerts can also be generated for incident response
teams based on that data, for example.

	Service Mapper [https://github.com/mozilla/service-map]

Standard Levels

In order to efficiently communicate how important the risk is, we standardized our own risk levels. This is mainly
because there are several different methods that all use similar wording and different meaning, confusing everyone.

Our levels are simple and well defined (at least, according to us!). They can be used in multiple ways, to assess
criticality, risk, urgency, work-effort, etc. in a completely standardized way.

	Standard levels reference

	Scoring and other levels

Reference documents

	Introduction to modern risk analysis [https://web.archive.org/web/20141118061526/http://www.riskmanagementinsight.com/media/docs/FAIR_introduction.pdf]

	ISO 31000 [https://www.iso.org/iso-31000-risk-management.html]

	ISO 27001 [https://en.wikipedia.org/wiki/ISO/IEC_27001]

	In
French - EBIOS method [https://www.ssi.gouv.fr/guide/ebios-2010-expression-des-besoins-et-identification-des-objectifs-de-securite/]

	CIS Critical Security Controls [https://www.cisecurity.org/controls/cis-controls-list/]

	Visualizations common in Risk Management [https://creately.com/blog/diagrams/risk-management-techniques/]

	
__TOC__
	
DRAFTThe goal of this document is to help teams operate safely within Amazon
Web Services. All Mozilla AWS accounts should follow the recommendations
below.

The Enterprise Information Security team maintains this document as a
reference guide for operational teams.

Updates to this page should be submitted to the source repository on
github [https://github.com/mozilla/wikimo_content/]. Changes are
detailed in the commit
history [https://github.com/mozilla/wikimo_content/commits/master].

[image: OpSec.png]

Root UserIf an attacker gains control of the root user in an AWS account, there
is no higher authority role that a security incident responder can use
to eradicate the attackers access. With root user access, the attacker
can exploit the resources in the AWS account and infosec will have
little ability to respond.

Use a strong unique password for the root user

	How to : Generate a password with a password manager and store that
password in a password manager protected by MFA or offline as it is
rarely if ever needed. One way to store the MFA offline is to use
the infosec security backup
service [https://mana.mozilla.org/wiki/display/SECURITY/Security+backup+service]

	Audited : False

	Rationale

	Non-unique passwords are
risky [https://wiki.mozilla.org/Security/Fundamentals#password-reuse]

	Weak passwords can be guessed or brute forced

Enable multi factor authentication (MFA) for the root user

	How to :
Instructions [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-root]

	Audited : True

	Rationale

	MFA is an effective means of preventing unauthorized
access [https://wiki.mozilla.org/Security/Fundamentals#mfa]

Avoid creating API keys for the root user

	How to : Instead of creating API keys for the root user, create them
for an IAM user

	Audited : False

	Rationale

	API keys bypass the requirement for MFA and enable an attacker
to takeover an AWS account merely by compromising a computer
containing the root user’s API keys.

	Virtually all actions that the root user can execute can also be
executed by an IAM user, obviating the need to create API keys
for the root user and use the root users permissions.

Avoid logging in as the root user

	How to : Instead of logging in as the root user, log in as an IAM
user with the permissions that you need to complete your task

	Audited : False

	Rationale

	Limiting the frequency with which the root user’s password and
MFA are used, reduces the window of opportunity for an attacker
with unauthorized access to a user’s computer to escalate their
access from the user’s computer to the AWS account’s root user

	Virtually all actions that the root user can execute can also be
executed by an IAM user.

CloudTrail

CloudTrail logs enable infosec to perform incident response when an
account has been compromised.

Use the Mozilla Secure CloudTrail Storage System

	How to : If your AWS account does not have CloudTrail enabled and
sending to the Mozilla Secure CloudTrail Storage System, you can
enable it by following these
instructions [https://mana.mozilla.org/wiki/display/SECURITY/AWS+Secure+CloudTrail+Storage+System#AWSSecureCloudTrailStorageSystem-HowtoenableyourMozillaAWSaccounttousetheSecureCloudTrailStorageSystem]

	Audited : True

	Rationale

	In order to protect the CloudTrail logs that AWS produces from
an attacker who compromised your AWS account from deleting them,
the Mozilla Secure CloudTrail Storage System causes AWS to ship
these logs to a segregated and secure AWS account, separate from
your own. This ensures that if an attacker compromises your AWS
account, they will not be able to destroy the records of what
changes they made to your account.

Route53

Avoid leaving DNS records in Route53 that resolve to third party services which you are no longer using

	How to : Review the DNS records you have setup in DNS zones hosted
in Route53. Look for records which resolve to IPs or names of third
party services (e.g. GitHub, Heroku, AmazonAWS) but which are not
setup and configured with that third party service. For example,
look for a CNAME that resolves to
foo.github.io [https://help.github.com/articles/setting-up-a-www-subdomain/]
but when browsed to returns a 404 “Site not found . GitHub Pages”

	Audited : False

	Rationale

	If an attacker registers an account with a third party service
for which your Route53 zone contains a record pointing to that
service, the attacker can then host their malicious content on
their site with your domain name. With this they could create a
phishing site in your DNS domain, exploit same origin bugs,
obtain domain wide cookies from users and execute cross site
scripting attacks.

S3

Avoid unintentionally granting public access to non-public S3 data

	How to : Review S3 bucket policies for the presence of policy
statements which permit a Principle of “*” as the actions granted
in that statement (for example reading content from the S3 bucket or
writing to the bucket) will be available to everyone

	Audited : True

	Rationale

	Data not classified as Public shouldn’t be readable or
modifiable by the public.

Security Groups

Use inbound security group rules instead of outbound security group rules to govern access

	How to : When creating security groups, only create inbound rules on
systems to allow inbound connections. Do not create outbound rules
on systems that initiate connections to other systems. Outbound
rules in security groups should be open/permissive. The exception to
this is security groups that control outbound access to the
internet. These security groups can and should have outbound rules

	Audited : False

	Rationale

	If a security group contains both inbound and outbound rules or
if the union of all security groups contain both inbound and
outbound rules, the resulting apparent access can easily differ
from the actual access being granted. Mixing inbound and
outbound rules makes it very difficult to determine the
resulting behavior of all rules combined. This complexity and
difference between the apparent behavior and the actual behavior
can expose systems to an attacker unintentionally

	The only place where outbound rules should be used is the one
case where they are necessary; when constraining outbound access
from AWS resources to the internet.

Disallow inbound network access by default

	How to : When creating security groups, only allow inbound access to
ports that are required. Avoid creating overly broad rules which
allow more ports than are required for the services hosted on the
systems protected by that security group.

	Audited : False

	Rationale

	Security Principle : Do not present unnecessary
services [https://wiki.mozilla.org/Security/Fundamentals/Security_Principles#Do_not_present_unnecessary_services]

	Limiting the network access an attacker has to a resource,
limits the size of the attack surface and the likelihood that
the attacker will be able to exploit the resource.

Disallow inbound network access from internal resources

	How to : By default, every AWS VPC is created with a single
“default” security group. This security group allows inbound
connections on all ports from all resources which are also part of
the same security group. The result of this is that any resource
which is part of this security is reachable over all ports from
other resources in the same security group.

	Modify the default security group and delete the “All traffic”
rule allowing inbound connections.

	Avoid creating any security group with a rule allowing all
inbound ports to either itself or other security groups

	Audited : False

	Rationale

	Security Principle : Do not present unnecessary
services [https://wiki.mozilla.org/Security/Fundamentals/Security_Principles#Do_not_present_unnecessary_services]

	Security Principle Do not allow lateral
movement [https://wiki.mozilla.org/Security/Fundamentals/Security_Principles#Do_not_allow_lateral_movement]

	AWS creates this default security group as a convenience so that
all resources you create can, by default, communicate with each
other. Unfortunately, this convenience results in an attacker
that gains access to one system being able to attack any service
listening on any other internal system.

Disallow outbound internet access except through HTTP proxy on NSM server

	How to

	Implement the recommended deployment of network security
monitoring (NSM) on a NAT
instance [https://mana.mozilla.org/wiki/display/POLICIES/Standard%3A+Network+Security+monitoring+in+AWS]
in your AWS account

	Ensure that all security groups in the account, other than the
security group used by the NSM server, disallow outbound access
to the internet

	Ensure that systems which need outbound internet access are part
of a security group which allows outbound access to the NSM
server

	Ensure that all services which need outbound access to the
internet and can be configured to use an HTTP proxy, use the
HTTP proxy running on the NAT instance instead of traversing the
NSM server directly

	Audited : False

	Rationale

	Sending outbound internet traffic through a network security
monitoring server allows for inspection of the traffic and
detection of signatures revealing compromised servers in the
VPC.

	Sending outbound internet traffic through an http proxy allows
for limiting internet destinations that internal systems can
reach which will prevent an attacker who compromises a system
from exfiltrating data.

layout: default
resource: true
categories: [Guidelines]
title: AWS Security
description: Best practices for securely operating in Amazon Web Services

The goal of this document is to help teams operate safely within Amazon Web Services. All Mozilla AWS accounts should follow the recommendations below.

Root User

The root user [https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html] of an AWS account is the single identity that has complete access to all AWS services and resources in the account. The root user has no username, is not a part of the AWS IAM product and instead uses their Amazon email address to log in. If an attacker gains control of the root user in an AWS account, there is no higher authority role that a security incident responder can use to eradicate the attackers access. With root user access, the attacker can exploit the resources in the AWS account and infosec will have little ability to respond.

Use a strong unique password for the root user

	How to : Generate a password with a password manager and store that password in a password manager protected by MFA or offline as it is rarely if ever needed. One way to store the MFA offline is to store it in a safe deposit box, or a similar physical safe solution. For example, Mozilla uses the infosec security backup service [https://mana.mozilla.org/wiki/display/SECURITY/Security+backup+service]

	Audited : False

	Rationale

	Non-unique passwords are risky [https://wiki.mozilla.org/Security/Fundamentals#password-reuse]

	Weak passwords can be guessed or brute forced

Enable multi factor authentication (MFA) for the root user

	How to : Instructions [https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-root]

	Audited : True

	Rationale

	MFA is an effective means of preventing unauthorized access [https://wiki.mozilla.org/Security/Fundamentals#mfa]

Enable multi factor authentication (MFA) for non federated IAM users

	How to : Instructions [https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user]

	Audited : False

	Rationale

	MFA is an effective means of preventing unauthorized access [https://wiki.mozilla.org/Security/Fundamentals#mfa]

Avoid creating API keys for the root user

	How to : Instead of creating API keys for the root user, create them for an IAM user

	Audited : False

	Rationale

	API keys bypass the requirement for MFA and enable an attacker to takeover an AWS account merely by compromising a computer containing the root user’s API keys.

	Virtually all actions that the root user can execute can also be executed by an IAM user, obviating the need to create API keys for the root user and use the root users permissions.

Avoid logging in as the root user

	How to : Instead of logging in as the root user, log in as an IAM user with the permissions that you need to complete your task

	Audited : False

	Rationale

	Limiting the frequency with which the root user’s password and MFA are used, reduces the window of opportunity for an attacker with unauthorized access to a user’s computer to escalate their access from the user’s computer to the AWS account’s root user

	Virtually all actions that the root user can execute can also be executed by an IAM user.

CloudTrail

CloudTrail logs enable the security team to perform incident response when an account has been compromised.

Use the Mozilla Secure CloudTrail Storage System

	How to : Mozilla teams should have CloudTrail enabled and sending it’s contents to the Mozilla Secure CloudTrail Storage System. You can enable it by following these instructions [https://mana.mozilla.org/wiki/display/SECURITY/AWS+Secure+CloudTrail+Storage+System#AWSSecureCloudTrailStorageSystem-HowtoenableyourMozillaAWSaccounttousetheSecureCloudTrailStorageSystem]

	Audited : True

	Rationale

	In order to protect the CloudTrail logs that AWS produces from an attacker who compromised your AWS account from deleting them, the Mozilla Secure CloudTrail Storage System causes AWS to ship these logs to a segregated and secure AWS account, separate from your own. This ensures that if an attacker compromises your AWS account, they will not be able to destroy the records of what changes they made to your account.

Route53

Do not leave DNS records in Route53 that resolve to third party services which you are no longer using

	How to : Review the DNS records you have setup in DNS zones hosted in Route53. Look for records which resolve to IPs or names of third party services (e.g. GitHub, Heroku, AmazonAWS) but which are not setup and configured with that third party service. For example, look for a CNAME that resolves to foo.github.io [https://help.github.com/articles/setting-up-a-www-subdomain/] but when browsed to returns a 404 “Site not found . GitHub Pages”

	Audited : False

	Rationale

	If an attacker registers an account with a third party service for which your Route53 zone contains a record pointing to that service, the attacker can then host their malicious content on their site with your domain name. With this they could create a phishing site in your DNS domain, exploit same origin bugs, obtain domain wide cookies from users and execute cross site scripting attacks. This is also known as domain take-over.

S3

Avoid unintentionally granting public access to non-public S3 data

	How to : Review S3 bucket policies for the presence of policy statements which permit a Principle of “*” as the actions granted in that statement (for example reading content from the S3 bucket or writing to the bucket) will be available to everyone

	Audited : True

	Rationale

	Data not classified as Public shouldn’t be readable or modifiable by the public.

Security Groups

Use inbound security group rules instead of outbound security group rules to govern access

	How to : When creating security groups, only create inbound rules on systems to allow inbound connections. Do not create outbound rules on systems that initiate connections to other systems. Outbound rules in security groups should be open/permissive. The exception to this is security groups that control outbound access to the internet. These security groups can and should have outbound rules

	Audited : False

	Rationale

	If a security group contains both inbound and outbound rules or if the union of all security groups contain both inbound and outbound rules, the resulting apparent access can easily differ from the actual access being granted. Mixing inbound and outbound rules makes it very difficult to determine the resulting behavior of all rules combined. This complexity and difference between the apparent behavior and the actual behavior can expose systems to an attacker unintentionally

	The only place where outbound rules should be used is the one case where they are necessary; when constraining outbound access from AWS resources to the internet.

Disallow inbound network access by default

	How to : When creating security groups, only allow inbound access to ports that are required. Avoid creating overly broad rules which allow more ports than are required for the services hosted on the systems protected by that security group.

	Audited : False

	Rationale

	Security Principle : Do not present unnecessary services [https://wiki.mozilla.org/Security/Fundamentals/Security_Principles#Do_not_present_unnecessary_services]

	Limiting the network access an attacker has to a resource, limits the size of the attack surface and the likelihood that the attacker will be able to exploit the resource.

Disallow inbound network access from internal resources

	How to : By default, every AWS VPC is created with a single “default” security group. This security group allows inbound connections on all ports from all resources which are also part of the same security group. The result of this is that any resource which is part of this security is reachable over all ports from other resources in the same security group.

	Modify the default security group and delete the “All traffic” rule allowing inbound connections.

	Avoid creating any security group with a rule allowing all inbound ports to either itself or other security groups

	Audited : False

	Rationale

	Security Principle : Do not present unnecessary services [https://wiki.mozilla.org/Security/Fundamentals/Security_Principles#Do_not_present_unnecessary_services]

	Security Principle Do not allow lateral movement [https://wiki.mozilla.org/Security/Fundamentals/Security_Principles#Do_not_allow_lateral_movement]

	AWS creates this default security group as a convenience so that all resources you create can, by default, communicate with each other. Unfortunately, this convenience results in an attacker that gains access to one system being able to attack any service listening on any other internal system.

Disallow outbound internet access except through HTTP proxy on NSM server

	How to

	Implement the recommended deployment of network security monitoring (NSM) on a NAT instance [https://mana.mozilla.org/wiki/display/POLICIES/Standard%3A+Network+Security+monitoring+in+AWS] in your AWS account

	Ensure that all security groups in the account, other than the security group used by the NSM server, disallow outbound access to the internet

	Ensure that systems which need outbound internet access are part of a security group which allows outbound access to the NSM server

	Ensure that all services which need outbound access to the internet and can be configured to use an HTTP proxy, use the HTTP proxy running on the NAT instance instead of traversing the NSM server directly

	Audited : False

	Rationale

	Sending outbound internet traffic through a network security monitoring server allows for inspection of the traffic and detection of signatures revealing compromised servers in the VPC.

	Sending outbound internet traffic through an http proxy allows for limiting internet destinations that internal systems can reach which will prevent an attacker who compromises a system from exfiltrating data.

Guidelines

 {% for page in site.pages %}
 {% if page.resource == true %}
 {% if page.categories.size == 1 and page.categories[0] == 'Guidelines' %}
 	{{ page.title }} {{ page.description }}

 {% endif %}
 {% endif %}
 {% endfor %}

Risk assessment

 {% for page in site.pages %}
 {% if page.resource == true %}
 {% if page.categories contains 'Guidelines' and page.categories contains 'Risk' %}
 	{{ page.title }} {{ page.description }}

 {% endif %}
 {% endif %}
 {% endfor %}

IAM

 {% for page in site.pages %}
 {% if page.resource == true %}
 {% if page.categories contains 'Guidelines' and page.categories contains 'IAM' %}
 	{{ page.title }} {{ page.description }}

 {% endif %}
 {% endif %}
 {% endfor %}

layout: default
resource: true
categories: [Guidelines]
title: Key Management
description: Find out which algorithms are recommended, when to expire keys, etc.

The goal of this document is to help operational teams with the handling and management of cryptographic material.
All Mozilla sites and deployment should follow the recommendations below.
The Enterprise Information Security (Infosec) team maintains this document as a reference guide for operational teams.

Data Definitions

Key material

Key material identifies the cryptographic secrets that compose a key. All key material must be treated as restricted data, meaning that only individual with specific training and need-to-know should have access to key material. Key material must be encrypted on transmission. Key material can be stored in clear text, but with proper access control.

Public certificates

Public certificates are public and do not require specific access control or encryption.

Algorithms by security levels

This section organizes algorithms and key sizes by rating (modern, intermediate, old) for a given validity period. Regardless of the rating chosen, we do recommend preferring 2 years keys with a reliable key rotation instead of trying to keep key material for long periods of time. This allow for faster operational reaction time when new algorithm weaknesses are discovered.

Recommended - generally valid for up to 10 years (default)

These may be used if expiring within 10 years and should be the default choice unless limited by technological factors such as client/server support or performance.

Use of EC is favored over RSA for performances purposes.

Type	Algorithm and key size	Bits of security
———————–	————————	——————
Asymmetric encryption	RSA 4096 bits	144 bits
Asymmetric encryption	ECDSA 512 bits	256 bits
Symmetric encryption	AES-GCM 256 bits	256 bits
Hash & HMAC	SHA-512	256 bits
Hash & HMAC	SHA3-512	256 bits

Acceptable - generally valid for up 2 years

These maybe be used if expiring within 2 years or up to 2024 whichever comes first.

Type	Algorithm and key size	Bits of security
———————-	————————	——————
Asymmetric keys	RSA 3072 bits	128 bits
Asymmetric keys	ECDSA 256 bits	128 bits
Symmetric encryption	AES-CBC 128 bits	128 bits
Hash & HMAC	SHA-256	128 bits
Hash & HMAC	SHA3-256	128 bits

Old - do not use

The following algorithms and sizes are still widely used but do not provide sufficient security for modern services and should be deprecated as soon as possible.

Type	Algorithm and key size	Bits of security
———————–	————————–	——————
Asymmetric encryption	RSA 1024 bits and below	80 bits
Asymmetric encryption	ECDSA 160 bits and below	80 bits
Symmetric encryption	3DES	112 bits
Symmetric encryption	RC4	
Hash & HMAC	SHA-1	80 bits
Hash & HMAC	MD5	64 bits

Handling

X509 certificates and keys

SSH

See OpenSSH.

PGP/GnuPG

$ gpg --full-gen-key
(1) RSA and RSA (default)
[...]
Your selection? 1
[...]
What keysize do you want? (4096)
[...]
Key is valid for? (0) 2y
[...]

Protection of user keys

	Protected by strong passphrase.

	Never copied to another system/disk aside from your own secured workstation/personal physical disks/tokens.

Protection of machine keys

	Storing the key material in a hardware token or HSM is preferred over simply using a strong passphrase.

	The keys must be accessible only by the admin user (root) and/or the system user requiring access.

Usage of machine keys should be registered in an inventory (a wiki page, LDAP, an inventory database), to allow for rapid auditing of key usage across an infrastructure.

Expiration of keys

As GnuPG trust model belongs to your master key, some may decide to not expire their master key. This is reasonable if the master key is very well protected, and a separate sub-key (or sub-keys) are used for day to day signing and encryption. For example, the master key could be stored offline and never copied or used on an online system.

Note: It is possible to change the expiration of a key, however all clients must fetch updates on a key server or will see your key as expired.

GnuPG settings

By default, GnuPG may use deprecated hashing algorithms such as SHA1 when used for signing. These settings ensure a more modern selection of hashing algorithms. Using long key ids over the default short key ids is also recommended. If possible, using complete fingerprints is even better.

File: ~/.gnupg/gpg.conf

personal-digest-preferences SHA512 SHA384
cert-digest-algo SHA256
default-preference-list SHA512 SHA384 AES256 ZLIB BZIP2 ZIP Uncompressed
keyid-format 0xlong

Definitions

Bits of security

Security Bits estimate the computational steps or operations (not machine instructions) required to solve a cryptographic problem (i.e. crack the key/hash). Of course, these do not factor in weaknesses in the algorithms which would reduce the effective amount of security bits and therefore is only used as an indicator of the width of the total (maximum) space to exhaust to ensuring finding the key.

For a more detailed definition, see https://en.wikipedia.org/wiki/Key_size, https://en.wikipedia.org/wiki/Secure_Hash_Algorithm and https://www.cryptopp.com/wiki/Security_Level#Security_Bits.

layout: default
resource: true
categories: [Guidelines]
title: Kubernetes
description: A high level guide of basic security needs for Kubernetes

The goal of this document is to help you understand the basics of how to securely implement Kubernetes [https://kubernetes.io/docs/] at Mozilla.
All Mozilla sites and deployment should follow the recommendations below.
The Enterprise Information Security (Infosec) team maintains this document as a reference guide.

Why Kubernetes?

Container-Based Approach

Kubernetes is a platform used to deploy containers to cloud environments. Mozilla has been using containers to develop and deploy applications for over a year, most notably powering https://www.mozilla.org/

Efficiencies of Clusters Over AMI Per Application Model

Because Kubernetes hosts containers on clusters of machines, all deployed applications inherit the clusters security best practices, alerting, logging and monitoring. These are implemented once and developers only need to develop alerting/monitoring specific to their application.

Platform Agnostic

A Kubernetes cluster can run on AWS, Rackspace, Google Compute or bare metal. This is not what one would describe as turn-key (at the moment) but with Kubernetes this is at least possible and mitigates vendor lock in risk. Additionally you can run Kubernetes on your laptop, something that is not possible with Amazon-centric solutions.

Mature / Robust

Kubernetes is a large, mature open-source project under active development. Mozilla does not have to invest resources in feature development, bug fixes, maintaining documentation and training materials or other similar tasks.

General Security Guidelines

AWS Security

If deploying to AWS, Mozilla AWS security standards apply: https://mana.mozilla.org/wiki/display/POLICIES/Standard%3A+AWS+Security

TLS

When implementing TLS, follow Mozilla’s Server Side TLS configuration guide: https://wiki.mozilla.org/Security/Server_Side_TLS Digicert or Let’s Encrypt certificates can be installed for public facing services. Kubernetes API & workers use self-signed temporary certs by default for their internal communications.

SSH

When implementing SSH, follow Mozilla’s OpenSSH Guidelines. If using Deis, deploy SSH keys per user as described here: https://deis.com/docs/workflow/users/ssh-keys/

OpenVPN

If using OpenVPN to tunnel kubectl traffic, implement VPN with MFA using: https://github.com/mozilla-it/duo_openvpn

Deis User Registration

As noted here: https://deis.com/docs/workflow/users/registration/#controlling-registration-modes the default for Deis is to allow user registration from anyone. This must be changed to admin_only as described in the link by either:

Patch the deployment:
kubectl --namespace=deis patch deployments deis-controller -p '{"spec":{"template":{"spec":{"containers":[{"name":"deis-controller","env":[{"name":"REGISTRATION_MODE","value":"disabled"}]}]}}}}'

Edit the deployment directly:
kubectl --namespace=deis edit deployments deis-controller

Deis Controller Whitelists

If using Deis, consider enforcing controller whitelists for IP ranges expected to interact with the deis-controller service: https://deis.com/docs/workflow/managing-workflow/security-considerations/#ip-whitelist

Additional references

	https://kubernetes.io/ (Main site for Kubernetes)

	https://deis.com/docs/workflow/quickstart/ (Deis Workflow quick start for k8s/helm/app deployment)

	http://2016.video.sector.ca/video/189177390 (SecTor 2016 Introductory Presentation on Kubernetes security)

layout: default
resource: true
categories: [Guidelines]
title: Likelihood Indicators
description: A model for determining how security controls affect risk

The goal of this document is to describe a methodology for determining what
effect on risk a missing security control will have

Overview

Service risk is composed both of the impact when a risk is manifested as well as
the likelihood that the risk will manifest. Impact can be assessed in a
Rapid Risk Assessment [https://wiki.mozilla.org/Security/Risk_management/Rapid_Risk_Assessment#Recording_risk_impacts]
and is primarily based on the data which the service handles.
Likelihood on the other hand is primarily driven by the presence or absence of
security controls in the service.

What follows is a methodology for associating likelihood indicators with
security controls. These likelihood indicators can then be integrated into the
Risk Integration Architecture [https://mana.mozilla.org/wiki/display/SECURITY/Risk+Integration+Architecture].

Meaning of the likelihood indicators

The likelihood indicator for a given security control is the likelihood that
the service will be exploited in a calendar year due to the absence of the
security control.

The indicators use the standard levels [https://wiki.mozilla.org/Security/Standard_Levels]
and mean

	LOW : The absence of this security control is unlikely to cause a risk to
manifest. It may cause security incident response to be slower or more
difficult. This causes HIGH and MAXIMUM impacts to result in MEDIUM risk.

	MEDIUM : The absence of this security control may cause a risk to manifest in
the coming year. This security control is important but with additional
supporting controls may not be required. This causes MAXIMUM impacts to
result in HIGH risk.

	HIGH : The absence of this security control will probably cause a risk to
manifest in the coming year. This security control is important and should
only be missing for LOW impact services. This causes MEDIUM and HIGH impacts
to result in HIGH risk and MAXIMUM impacts to result in MAXIMUM
risk.

	MAXIMUM : The absence of this security control will cause a risk to manifest
in the coming year. This security control is required. This causes MEDIUM
impacts to result in HIGH risk. This causes HIGH and MAXIMUM impacts to result
in MAXIMUM risk.

Determining the likelihood indicator for a security control

When determining the likelihood indicator for a security control consider

	How easy is it for a threat agent to determine that the control is missing

	How easy is it for a threat agent to exploit the fact that the control is
missing

	How well known are the paths of exploitation mad possible by the absence of
this security control

	Are there current ongoing attacks on other services which are protected by
this security control

The Reverse Engineering Method

This method involves thinking of hypothetical data being protected by the
security control, calculating the risks resulting from that data’s impact level
and the various possible likelihood indicator levels and looking for which
resulting risk matches best.

LOW likelihood

Impact	Risk
——-	——
LOW	LOW
MEDIUM	LOW
HIGH	LOW
MAXIMUM	MEDIUM

MEDIUM likelihood

Impact	Risk
——-	——
LOW	LOW
MEDIUM	MEDIUM
HIGH	MEDIUM
MAXIMUM	HIGH

HIGH likelihood

Impact	Risk
——-	——-
LOW	MEDIUM
MEDIUM	HIGH
HIGH	HIGH
MAXIMUM	MAXIMUM

MAXIMUM likelihood

Impact	Risk
——-	——-
LOW	MEDIUM
MEDIUM	HIGH
HIGH	MAXIMUM
MAXIMUM	MAXIMUM

Communicating the likelihood indicator

Likelihood indicators should be sent in the standard ServiceUI format [https://mana.mozilla.org/wiki/display/SECURITY/Risk+Integration+Architecture#RiskIntegrationArchitecture-RESTInterfaces(ofServiceUI)]
to the ServiceUI.

layout: default
resource: true
categories: [Guidelines]
title: OpenSSH
description: How to configure and use OpenSSH server and client securely

The goal of this document is to help operational teams with the configuration of OpenSSH server and client.
All Mozilla sites and deployment should follow the recommendations below.
The Enterprise Information Security (Infosec) team maintains this document as a reference guide.

Only non-default settings are listed in this document

Most default OpenSSH settings that are security-related already provide good security, thus changing them is at your own risk and is not documented here. For example, these guidelines assume only SSH protocol 2 is configured in the server, and SSH protocol 1 is disabled. This also assumes that you are keeping OpenSSH up-to-date with security patches.
See man sshd_config, man ssh_config for more information on specific settings if you nevertheless need to change them. |

OpenSSH server

Configuration

Different versions of OpenSSH support different options which are not always compatible. This guide shows settings for the most commonly deployed OpenSSH versions at Mozilla - however, using the latest version of OpenSSH is recommended.

Modern (OpenSSH 6.7+)

File: /etc/ssh/sshd_config

Supported HostKey algorithms by order of preference.
HostKey /etc/ssh/ssh_host_ed25519_key
HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_ecdsa_key

KexAlgorithms curve25519-sha256@libssh.org,ecdh-sha2-nistp521,ecdh-sha2-nistp384,ecdh-sha2-nistp256,diffie-hellman-group-exchange-sha256

Ciphers chacha20-poly1305@openssh.com,aes256-gcm@openssh.com,aes128-gcm@openssh.com,aes256-ctr,aes192-ctr,aes128-ctr

MACs hmac-sha2-512-etm@openssh.com,hmac-sha2-256-etm@openssh.com,umac-128-etm@openssh.com,hmac-sha2-512,hmac-sha2-256,umac-128@openssh.com

Password based logins are disabled - only public key based logins are allowed.
AuthenticationMethods publickey

LogLevel VERBOSE logs user's key fingerprint on login. Needed to have a clear audit track of which key was using to log in.
LogLevel VERBOSE

Log sftp level file access (read/write/etc.) that would not be easily logged otherwise.
Subsystem sftp /usr/lib/openssh/sftp-server -f AUTHPRIV -l INFO

Root login is not allowed for auditing reasons. This is because it's difficult to track which process belongs to which root user:
#
On Linux, user sessions are tracking using a kernel-side session id, however, this session id is not recorded by OpenSSH.
Additionally, only tools such as systemd and auditd record the process session id.
On other OSes, the user session id is not necessarily recorded at all kernel-side.
Using regular users in combination with /bin/su or /usr/bin/sudo ensure a clear audit track.
PermitRootLogin No

Use kernel sandbox mechanisms where possible in unprivileged processes
Systrace on OpenBSD, Seccomp on Linux, seatbelt on MacOSX/Darwin, rlimit elsewhere.
UsePrivilegeSeparation sandbox

File: /etc/ssh/moduli

All Diffie-Hellman moduli in use should be at least 3072-bit-long (they are used for diffie-hellman-group-exchange-sha256) as per our Key management Guidelines recommendations. See also man moduli.

To deactivate short moduli in two commands: awk '$5 > 3071' /etc/ssh/moduli > /etc/ssh/moduli.tmp && mv /etc/ssh/moduli.tmp /etc/ssh/moduli

Intermediate (OpenSSH 5.3)

This is mainly for use by RHEL6, CentOS6, etc. which run older versions of OpenSSH.

File: /etc/ssh/sshd_config

Supported HostKey algorithms by order of preference.
HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_ecdsa_key

KexAlgorithms diffie-hellman-group-exchange-sha256
MACs hmac-sha2-512,hmac-sha2-256
Ciphers aes256-ctr,aes192-ctr,aes128-ctr

Password based logins are disabled - only public key based logins are allowed.
RequiredAuthentications2 publickey

RequiredAuthentications2 not work on official OpenSSH 5.3 portable.
In this is your case, use this instead:
#PubkeyAuthentication yes
#PasswordAuthentication no

LogLevel VERBOSE logs user's key fingerprint on login. Needed to have a clear audit track of which key was using to log in.
LogLevel VERBOSE

Log sftp level file access (read/write/etc.) that would not be easily logged otherwise.
Subsystem sftp /usr/lib/openssh/sftp-server -f AUTHPRIV -l INFO

Root login is not allowed for auditing reasons. This is because it's difficult to track which process belongs to which root user:
#
On Linux, user sessions are tracking using a kernel-side session id, however, this session id is not recorded by OpenSSH.
Additionally, only tools such as systemd and auditd record the process session id.
On other OSes, the user session id is not necessarily recorded at all kernel-side.
Using regular users in combination with /bin/su or /usr/bin/sudo ensure a clear audit track.
PermitRootLogin No

File: /etc/ssh/moduli

All Diffie-Hellman moduli in use should be at least 2048-bit-long. From the structure of moduli files, this means the fifth field of all lines in this file should be greater than 2047.

To deactivate weak moduli in two commands: awk '$5 > 2047' /etc/ssh/moduli > /etc/ssh/moduli.tmp; mv /etc/ssh/moduli.tmp /etc/ssh/moduli

Multi-Factor Authentication (OpenSSH 6.3+)

Recent versions of OpenSSH support MFA (Multi-Factor Authentication). Using MFA is recommended where possible.

It requires additional setup, such as using the OATH Toolkit [https://www.nongnu.org/oath-toolkit/] or DuoSecurity [https://www.duosecurity.com].

ATTENTION In order to allow using one time passwords (OTPs) and any other text input, Keyboard-interactive is enabled in OpenSSH. This MAY allow for password authentication to work. It is therefore very important to check your PAM configuration so that PAM disallow password authentication for OpenSSH.

OpenSSH 6.3+ (default)

File: /etc/ssh/sshd_config

IMPORTANT: you will have to ensure OpenSSH cannot authenticate with passwords with PAM in /etc/pam.d/sshd
"PasswordAuthentication no" is not sufficient!
PubkeyAuthentication yes
PasswordAuthentication no
AuthenticationMethods publickey,keyboard-interactive:pam
KbdInteractiveAuthentication yes
UsePAM yes
Ensure /bin/login is not used so that it cannot bypass PAM settings for sshd.
Note, this option is no longer needed as of OpenSSH 7.4 as support for UseLogin has been removed
UseLogin no

OpenSSH 5.3+ w/ RedHat/CentOS patch (old)

File: /etc/ssh/sshd_config

Allow keyboard-interactive.
IMPORTANT: you will have to ensure OpenSSH cannot authenticate with passwords with PAM in /etc/pam.d/sshd
"PasswordAuthentication no" is not sufficient!
RequiredAuthentications2 publickey,keyboard-interactive:skey
PasswordAuthentication no
ChallengeResponseAuthentication yes
UsePAM yes
Ensure /bin/login is not used so that it cannot bypass PAM settings for sshd.
UseLogin no

PAM configuration for use with the OATH Toolkit [https://www.nongnu.org/oath-toolkit/] or DuoSecurity [https://www.duosecurity.com] as second authentication factor.

File: /etc/pam.d/sshd

#%PAM-1.0
auth required pam_sepermit.so

WARNING: make sure any password authentication module is disabled.
Example: pam_unix.so, or "password-auth", "system-auth", etc.
#auth include password-auth

Options to enable when using OATH toolkit
#auth requisite pam_oath.so usersfile=/etc/users.oath digits=6 window=20

Options to enable when using DuoSecurity
#auth sufficient /lib64/security/pam_duo.so

account required pam_nologin.so

Ciphers and algorithms choice

	When CHACHA20 (OpenSSH 6.5+) is not available, AES-GCM (OpenSSH 6.1+) and any other algorithm using EtM (Encrypt then MAC) disclose the packet length [http://blog.djm.net.au/2013/11/chacha20-and-poly1305-in-openssh.html] - giving some information to the attacker. Only recent OpenSSH servers and client support CHACHA20.

	NIST curves (ecdh-sha2-nistp512,ecdh-sha2-nistp384,ecdh-sha2-nistp256) are listed for compatibility, but the use of curve25519 is generally preferred [https://safecurves.cr.yp.to/].

	SSH protocol 2 supports DH [https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange] and ECDH [https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman] key-exchange as well as forward secrecy [https://en.wikipedia.org/wiki/Forward_secrecy]. Regarding group sizes, please refer to Key management Guidelines.

The various algorithms supported by a particular OpenSSH version can be listed with the following commands:

$ ssh -Q cipher
$ ssh -Q cipher-auth
$ ssh -Q mac
$ ssh -Q kex
$ ssh -Q key

OpenSSH client

Configuration

If you have a file containing known_hosts using RSA or ECDSA host key algorithm and the server now supports ed25519 for example, you will get a warning that the host key has changed and will be unable to connect. This means you will have to verify the new host key.

The following configurations expect a recent OpenSSH client, as updating OpenSSH on the client side is generally not an issue.

Modern

This configuration is less compatible and you may not be able to connect to some servers which use insecure, deprecated algorithms. Nevertheless, modern servers will work just fine.

File: ~/.ssh/config

Ensure KnownHosts are unreadable if leaked - it is otherwise easier to know which hosts your keys have access to.
HashKnownHosts yes
Host keys the client accepts - order here is honored by OpenSSH
HostKeyAlgorithms ssh-ed25519-cert-v01@openssh.com,ssh-rsa-cert-v01@openssh.com,ssh-ed25519,ssh-rsa,ecdsa-sha2-nistp521-cert-v01@openssh.com,ecdsa-sha2-nistp384-cert-v01@openssh.com,ecdsa-sha2-nistp256-cert-v01@openssh.com,ecdsa-sha2-nistp521,ecdsa-sha2-nistp384,ecdsa-sha2-nistp256

KexAlgorithms curve25519-sha256@libssh.org,ecdh-sha2-nistp521,ecdh-sha2-nistp384,ecdh-sha2-nistp256,diffie-hellman-group-exchange-sha256
MACs hmac-sha2-512-etm@openssh.com,hmac-sha2-256-etm@openssh.com,umac-128-etm@openssh.com,hmac-sha2-512,hmac-sha2-256,umac-128@openssh.com
Ciphers chacha20-poly1305@openssh.com,aes256-gcm@openssh.com,aes128-gcm@openssh.com,aes256-ctr,aes192-ctr,aes128-ctr

Intermediate (connects to older servers)

This configuration can connect to older OpenSSH servers which run old or intermediate configurations.

File: ~/.ssh/config

Ensure KnownHosts are unreadable if leaked - it is otherwise easier to know which hosts your keys have access to.
HashKnownHosts yes
Host keys the client accepts - order here is honored by OpenSSH
HostKeyAlgorithms ssh-ed25519-cert-v01@openssh.com,ssh-rsa-cert-v01@openssh.com,ssh-ed25519,ssh-rsa,ecdsa-sha2-nistp256-cert-v01@openssh.com,ecdsa-sha2-nistp521-cert-v01@openssh.com,ecdsa-sha2-nistp384-cert-v01@openssh.com,ecdsa-sha2-nistp521,ecdsa-sha2-nistp384,ecdsa-sha2-nistp256

Key generation

Large key sizes are used as SSH keys are not renewed very often (see also Key management Guidelines).

Don’t hesitate to create multiple different keys for different usages. In particular, never mix your personal and Mozilla keys.

RSA keys are favored over ECDSA keys when backward compatibility ''is required'',
thus, newly generated keys are always either ED25519 or RSA (NOT ECDSA or DSA).
$ ssh-keygen -t rsa -b 4096 -f ~/.ssh/id_rsa_mozilla_$(date +%Y-%m-%d) -C "Mozilla key for xyz"

ED25519 keys are favored over RSA keys when backward compatibility ''is not required''.
This is only compatible with OpenSSH 6.5+ and fixed-size (256 bytes).
$ ssh-keygen -t ed25519 -f ~/.ssh/id_ed25519_mozilla_$(date +%Y-%m-%d) -C "Mozilla key for xyz"

You may then want to add the new key to your SSH agent or your configuration file (or both).

Add key to ssh-agent
$ ssh-add ~/.ssh/id_..._mozilla... # <= replace by your key's path

Add configuration to ~/.ssh/config
host *.mozilla.com
IdentityFile ~/.ssh/id_...mozilla... # <= replace by your key's path

Protection of user keys

	Protected by strong passphrase.

	Never copied to another system than your own workstation/personal physical disks/tokens.

	Use SSH forwarding or SSH tunneling if you need to jump between hosts. DO NOT maintain unnecessary agent forwarding when unused.

Protection of machine keys

When SSH keys are necessary for automation between systems, it is reasonable to use passphrase-less keys.

	The recommended settings are identical to the user keys.

	The keys must be accessible only by the admin user (root) and/or the system user requiring access.

	Usage of machine keys should be registered in an inventory (a wiki page, ldap, an inventory database), to allow for rapid auditing of key usage across an infrastructure.

	The machine keys should be unique per usage. Each new usage (different service, different script called, etc.) should use a new, different key.

	Only used when strictly necessary.

	Restrict privileges of the account (i.e. no root or “sudoer” machine account).

	Using a ForceCommand returning only the needed results, or only allowing the machine to perform SSH-related tasks such as tunneling is preferred.

	Disable sftp if not needed as it exposes more surface and different logging mechanisms than SSH (and thus scp) itself.

groupadd sftpusers
usermod -a -g sftpusers <userthat_needs_ftp>
chgrp sftpusers /usr/lib/openssh/sftp-server
chmod 0750 /usr/lib/openssh/sftp-server

Multi-factor bypass setup for machine keys

Machine keys do not play well with multi-factor authentication as there is no human interaction.

	All logins from machine accounts should be protected by an additional authentication layer (VPN, another machine, etc.).

	All logins from machine accounts are only allowed within the private IP-space, and if possible, only the relevant machine source IPs should be accessible.

File: /etc/ssh/sshd_config (OpenSSH 6.3+)

Match User machine_user Address 10.0.0.0/8,192.168.0.0/16,172.16.0.0/12
 PubkeyAuthentication yes
 KbdInteractiveAuthentication no
 AuthenticationMethods publickey

File: /etc/ssh/sshd_config (OpenSSH 5.3+ w/ RedHat/CentOS patch)

Match User machine_user Address 10.0.0.0/8,192.168.0.0/16,172.16.0.0/12
 RequiredAuthentications2 publickey

Auditing your existing SSH keys

Existing keys are generally stored in ~/.ssh/ (Linux/OSX) or %APPDATA% (Windows). Look for id_{rsa,ed25519,ecdsa,dsa}, identity, IdentityFile, *.pem, and other identity files.

Display SSH keys information

You may run this for any key file that you have.
$ ssh-keygen -lf id_rsa
2048 bc:4f:46:2b:3d:f1:e2:0f:ac:40:99:49:ed:c9:81:a2 Mozilla key for xyz (RSA)
^^ ^^^^^^^^^ ^^^^ ^^^
|__ Size |__ Fingerprint |__ Comment |__ Type

SSH agent forwarding

ATTENTION SSH Agent forwarding exposes your authentication to the server you’re connecting to. By default, an attacker with control of the server (i.e. root access) can communicate with your agent and use your key to authenticate to other servers without any notification (i.e. impersonate you).
For this reason, one must be careful when using SSH agent forwarding. Defaulting to always forwarding the agent is strongly discouraged.
Note also that while the attacker can use your key as long as the agent is running and forwarded, he cannot steal/download the key for offline/later use.

SSH forwarding allows you to jump between hosts while keeping your private key on your local computer. This is accomplished by telling SSH to forward the authentication requests back to the ssh-agent of your local computer. SSH forwarding works between as many hosts as needed, each host forwarding new authentication request to the previous host, until the ssh-agent that holds the private key is reached.

[image: ../_images/Ssh_forwarding.png]SSH Forwarding

On each host, two environment variables are declared for the user enabling ssh-agent:

	$SSH_AUTH_SOCK declares the location of the unix socket that can be used to forward an authentication request back to the previous host.(ex: /tmp/ssh-NjPxtt8779/agent.8779). Only present if using SSH agent forwarding.

	$SSH_CONNECTION shows the source IP and port of the previous host, as well as the local IP and port. (ex: 10.22.248.74 44727 10.8.75.110 22).

To use ssh-agent, add the flag -A to your ssh commands:

$ ssh -A user@ssh.mozilla.com

You can set the following configuration parameter in your local ssh configuration at ~/.ssh/config.

Host ssh.mozilla.com
 ForwardAgent yes

Hardening the Agent forwarder

It is possible to require confirmation every time the agent is used (i.e. when you connect to a server through the SSH agent) by using the -c flag:

First, remove the key from the agent if it's already loaded:
$ ssh-add -d ~/.ssh/id_ed25519
And re-add it with the -c flag:
$ ssh-add -c ~/.ssh/id_ed25519

It is also possible to lock the key in the agent after a configurable amount of time, this can be done either for all keys when starting the agent, or per key when adding the keys to the agent with the -t flag:

Keep all keys decrypted/useable in memory for 30 minutes (1800 seconds)
$ ssh-agent -t 1800

First, remove the key from the agent if it's already loaded:
$ ssh-add -d ~/.ssh/id_ed25519
Re-add it, with the -t flag to keep this specific key decrypted/useable in memory for 30 minutes (1800 seconds)
$ ssh-add -t 1800 ~/.ssh/id_ed25519

For MacOSX in particular it’s possible to save the passphrase in the Keychain. If you do so it is strongly recommended to also change the keychain setting to lock itself when the computer is locked, and/or to timeout and lock the keychain. These settings are not controlled by OpenSSH.

MacOSX only - save the passphrase in the Keychain
$ ssh-add -K ~/.ssh/id_ed25519

Recommended, safer alternatives to SSH agent forwarding

OpenSSH >=7.3

OpenSSH 7.3 onwards allow users to jump through several hosts in a rather automated fashion. It has full support for scp and sftp commands as well as regular ssh.

For example to reach a host behind a bastion/jumphost:

Single jump
$ ssh -J ssh.mozilla.com myhost.private.scl3.mozilla.com

Jump through 2 hops
$ ssh -J ssh.mozilla.com,ec2-instance.aws.net 10.0.0.3

Copy data from a host
$ scp -oProxyJump=ssh.mozilla.com myhost.private.scl3.mozilla.com:/home/kang/testfile ./

You can also add these lines to your ~/.ssh/config

Host *.mozilla.com !ssh.mozilla.com
ProxyJump ssh.mozilla.com

Older versions of OpenSSH

It is possible to directly forward ports for single jumps instead of forwarding the agent. This has the advantage of never exposing your agent to the servers you’re connecting to.

For example, you can add these lines to your ~/.ssh/config

Host *.mozilla.com !ssh.mozilla.com
ProxyCommand ssh ssh.mozilla.com -W %h:%p

This will automatically forward the SSH connection over ssh.mozilla.com when you connect to a mozilla.com SSH server.

Appendixes

Key material handling

Key material identifies the cryptographic secrets that compose a key. All key material must be treated as MOZILLA CONFIDENTIAL GROUP RESTRICTED data, meaning that:

	Only individual with specific training and need-to-know should have access to key material.

	Key material must be encrypted on transmission.

	Key material can be stored in clear text, but only with proper access control (limited access).

This includes:

	OpenSSH server keys (/etc/ssh/ssh_host_*key)

	Client keys (~/.ssh/id_{rsa,dsa,ecdsa,ed25519} and ~/.ssh/identity or other client key files).

Client key size and login latency

In order to figure out the impact on performance of using larger keys - such as RSA 4096 bytes keys - on the client side, we have run a few tests:

On an idle, i7 4500 intel CPU using OpenSSH_6.7p1, OpenSSL 1.0.1l and ed25519 server keys the following command is ran 10 times:

time ssh localhost -i .ssh/id_thekey exit

Results:

Client key	Minimum	Maximum	Average
————	———	———	———
RSA 4096	120ms	145ms	127ms
RSA 2048	120ms	129ms	127ms
ed25519	117ms	138ms	120ms

Keep in mind that these numbers may differ on a slower machine, and that this contains the complete login sequence and therefore is subject to variations. However, it seems safe to say that the latency differences are not significant and do not impact performance sufficiently to cause any concern regardless of the type of key used.

Reference documents

	Key management Guidelines

	Server Side TLS Guidelines [https://wiki.mozilla.org/Security/Server_Side_TLS]

	RFC4418 (umac) [https://www.ietf.org/rfc/rfc4418.txt]

	umac draft [https://www.openssh.com/txt/draft-miller-secsh-umac-01.txt]

	Safe curves [https://safecurves.cr.yp.to/]

	DJM blog [http://blog.djm.net.au/2013/11/chacha20-and-poly1305-in-openssh.html]

	Stribika blog [https://stribika.github.io/2015/01/04/secure-secure-shell.html]

	AES-GCM performance study [https://2013.diac.cr.yp.to/slides/gueron.pdf]

	CHACHA20 vs AES-GCM performance study [https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html]

	PROTOCOL.certkeys [https://cvsweb.openbsd.org/cgi-bin/cvsweb/%7Echeckout%7E/src/usr.bin/ssh/PROTOCOL.certkeys?rev=1.9&content-type=text/plain]

	rfc44880bis from GnuPG [https://wiki.gnupg.org/rfc4880bis]

	Weak Diffie-Hellman and the Logjam Attack [https://weakdh.org/]

	On OpenSSH and Logjam, by Jethro Beekman [https://jbeekman.nl/blog/2015/05/ssh-logjam/]

layout: default
resource: true
categories: [Guidelines]
title: Phishing
description: A fraudulent practice of sending emails (or other communications) purporting to be from reputable companies in order to induce individuals to reveal personal information, such as passwords and credit card numbers.

The goal of this document is to help users figure out if they are being phished and escalate accordingly.

If at any point you believe you are being targeted in a phishing campaign, it’s important to raise those concerns with your security team.

Background

Phishing is an attack used to elicit an action from you that you would otherwise not do (click a link, login, pay a bill, click an attachment, etc.) that has a negative affect on you, your computers, your business, or others (often compromising an account, a computer, or eliciting payment for services not rendered).

Intuition

Your own intuition is probably your best asset for easily detecting phishing attacks. If an email seems out of place, unsolicited or asks you to take a weird action, stop and consider whether you are in a phishing scenario. The below information will be helpful in supporting those “weird feels” with evidence that would validate those concerns.

Email Headers

Email headers are a great way to deduce the true origin of a given email. As noted above, emails often contain a format section which is forgeable by an attacker to make it seem as though an email came from a different source. If you’re using Gmail, you can follow the following steps to view the full email headers.

	Open the email in Gmail

	Open the drop down menu (three vertical dots, next to the reply button)

	Select ‘Show original’

When viewing the full headers, it’s important to understand who actually sent a given email. As noted above, formatting content within emails can be tampered with to make an email seem as though it’s from someone else.

One of the more common techniques with phishing emails is to abuse the From: field content. This often looks like…

From: Pat Smith (psmith@example.com) <abadguy@evil.com>
To: You <you@example.com>
Subject: An Example Subject

Links

HTML documents can contain links to email addresses (such as mailto:hello@example.com). These links can be misleading, much like a link on any webpage. It’s important to hover over any links provided in emails before clicking them to ensure they take you to the correct domain. This hover action will present you with a preview of the URL in the bottom of your email client.

A common tactic for detecting malicious URLs in email is simply making sure the link is to the right domain. Phishing attacks will often leverage common looking domains with one character substituted in the hopes of getting you to trust them.

A legitimate link for mozilla.org would look like this when hovered…

https://mozilla.org/

However, an attacker may replace the l with a numerical 1 to try and trick you…

https://mozi11a.org/

One way to avoid falling for such attacks, is simply not to click links provided in email. If an email is asking that you click a link to login to a website, consider visiting the website directly using a bookmark. Another technique is to make use of a password manager that supports an auto-fill feature that binds to the site address. A password manager with an auto-fill feature will often require the website to match exactly before submitting credentials and this can sometimes act as a red flag if the auto-fill feature does not work.

If you observe this or some other behavior that suggests you’ve received a phishing email and have been coerced into clicking a malicious link, it’s important to raise it with your security team for further review and attach the email headers (see above) and provide the phishing URL for further review.

Attachments

Phishing emails often contain attachments in the hope that you will click and run them and compromise your workstation. If you need to open an email attachment, make sure that you can confirm that the sender of that email is truly the sender and not a spoofed email made to look as if it was a trusted sender. This can often be determined by examining the email headers (more details above) and generally whether that email was out of the blue from someone you rarely talk to or is outside the norm.

There are a number of malicious attachment types that are more dangerous than others, which include:

	PDF Documents (very powerful, can have embedded malicious content)

	MS Word/Excel Document (very powerful, especially in cases where Macros need to be enabled)

	Bash/.exe Files (extremely dangerous)

If you observe this or some other behavior that suggests someone is sending you unsolicited dangerous attachment types raise it with your security team for further review and attach the email headers (see above) and provide the example attachment for further review.

Password Manager Behavior

Phishing emails often attempt to have you enter credentials in a lookalike site with a similar domain name. The human eye may have a hard time telling the difference, but a password manager will refuse to autofill your credentials because it won’t recognize the fraudulent domain. By using a password manager, you make your passwords more secure and reduce your risk of being phished.

References/Additional Reading 2

	Phishing and Malware Protection in Firefox [https://support.mozilla.org/en-US/kb/how-does-phishing-and-malware-protection-work]

	Report a Bad Site to Google Safe Browsing [https://safebrowsing.google.com/safebrowsing/report_phish/]

	Report a Bad Site to StopBadWare.org [https://www.stopbadware.org/report-badware]

	Anti-Phishing Working Group [https://www.apwg.org/]

	Phishing Wikipedia [https://en.wikipedia.org/wiki/Phishing]

	WebAuthn [https://duo.com/blog/web-authentication-what-it-is-and-what-it-means-for-passwords]

layout: default
resource: true
categories: [Guidelines]
title: Web Security
description: What headers, setup, etc. should you follow for your web site?

The goal of this document is to help operational teams with creating secure web applications. All Mozilla sites and deployments are expected to follow the recommendations below. Use of these recommendations by the public is strongly encouraged.
The Enterprise Information Security (Infosec) team maintains this document as a reference guide.

Table of Contents

	Cheat Sheet

	Transport Layer Security (TLS/SSL)

	HTTPS

	HTTP Strict Transport Security

	HTTP Redirections

	HTTP Public Key Pinning

	Resource Loading

	Content Security Policy

	contribute.json

	Cookies

	Cross-origin Resource Sharing

	CSRF Prevention

	Referrer Policy

	robots.txt

	Subresource Integrity

	X-Content-Type-Options

	X-Frame-Options

	X-XSS-Protection

	Version History

Web Security Cheat Sheet

	 Guideline
	 SecurityBenefit

 layout: default resource: true categories: [Guidelines,IAM] title: OpenID Connect description: How to use OpenID Connect securely and make user’s session experience better

layout: default
resource: true
categories: [Guidelines,IAM]
title: OpenID Connect
description: How to use OpenID Connect securely and make user’s session experience better

The goal of this document is to help you understand the basics of how to securely implement OpenID Connect (OIDC) [https://en.wikipedia.org/wiki/OpenID_Connect] when authenticating and authorizing users.
All Mozilla sites and deployment should follow the recommendations below.
The Enterprise Information Security (Infosec) team maintains this document as a reference guide.

Just looking for code? Reference configuration and code for implementing OIDC as described below is also available [https://github.com/mozilla-iam/testrp.security.allizom.org].
Additionally, Mozilla provides OIDC single sign on support for Mozilla properties and access can be requested by following documentation here [https://mana.mozilla.org/wiki/display/SECURITY/SSO+Request+Form]

Common abbreviations & definitions

Abbreviation	Full and related names	Description
—————-	———————————————————	———
Authentication	Login	The act of verifying a user identity, i.e. verify the user is who they say they are.
Authorization	role, groups, attributes, access control list, scopes	The act of granting access to specific resources (to an authenticated user, or bearer of a secret).
OIDC	OpenID Connect	A standardized identity layer for authentication that uses OAuth2 (not to be confused with OpenID which only provides authentication, or pure Oauth2 which only provides authorization). While OIDC uses OAuth2 for authorization, it also leverages (some would say, abuses) OAuth2 authorization to perform authentication tasks.
OAuth2	Open standard for access delegation.	A protocol that enables a user or system to authorize one resource to access data from another resource (ex: a user delegates some of their access permissions to website A, so that website A can access data from website B on behalf of the user).
RP	Relying Party, client, web application, web property	Generally a web application that wants to authenticate and eventually authorize access to data.
OP	OIDC Provider, IdP, authorization server	Provides authentication and authorization for relying parties (RPs). It may rely on itself, another OIDC Provider (OP) or another Identity Provider (IdP) (ex: the OP provides a front-end for LDAP, WS-Federation or SAML).
Scopes	role, groups, attributes, access control list, scopes	Access control information, groups, roles, attributes, etc. that are used by the relying party (RP) to grant specific authorization/access permissions to a user.
SSO	Single Sign On	An OIDC Provider (OP) and set of relying parties (RPs) that provide a unique sign-on panel for users, and that coherently handle session information for the user.
JWT	JSON Web Tokens, id token	Base64 encoded, optionally signed, small and self-contained JSON documents that represent a possibly signed JSON message. The JSON message contains the issuer of the token, the subject (usually owner/user of the token), how the user authenticated, and for whom the token is intended to (audience).
Tokens	API keys, access token, refresh token	An opaque, unique secret string that is used to access protected resources.
SCIM	System for Cross-domain Identity Management	A standardized schema and API for querying and managing user identities (attributes, etc.)

OIDC in a nutshell

OpenID Connect (OIDC) is a protocol that allow web applications (also called relying parties, or RP) to authenticate users with an external server called the OpenID Connect Provider (OP). This server typically gets user information from an identity provider (IdP), which is a database of user credentials and attribute information.

The communication with the OpenID Connect Provider (OP) is done using tokens. An ID token is provided to the web application (RP) by the Open ID Connect Provider (OP) once the user has authenticated. It contains a JSON document which informs the web application (RP) about how, when the user has authenticated, various attributes, and for how long the user session can be trusted. This token can be re-newed as often as necessary by the web application (RP) to ensure that the user and its attributes are both valid and up to date.

Other tokens can be used, though these do not pertain directly to authentication. These are also often called OAuth2 tokens. This is because OIDC is based on OAuth2 and thus also provides full OAuth2 support. These two types of OAuth2 tokens (Access Token and Refresh Tokens) enable their bearer to access information from other websites and resources (including additional user attributes that may not be passed by the ID token) - but are not required to perform user authentication.

[image: ../../_images/OIDC_diagram.png]OIDC Diagram

OIDC tokens reference table

Token	Format	Description
——————-	————————————————————–	———–
Access token	A string containing a unique secret token (like an API key).	The Access token has specific permissions and is used to get data from an API. It expires quickly, typically within 24 hours.
Refresh token	A string containing a unique secret token (like an API key).	The Refresh token enables its bearer to request and obtain new Access tokens. These newly obtained access tokens have a subset of the permissions that the Refresh token has. The Refresh token never expires.
ID token	Base64-encoded JSON document (JWT [https://jwt.io/])	ID tokens are created and signed by OpenID Connect Providers (OP) and consumed, verified by web applications authenticating users (RPs). The ID token contains information about how and when the user authenticated along with various attributes.

Detailed OIDC authentication flow

This sequence diagram is useful if you want to understand how OIDC works, or need to modify an OIDC library.

[image: ../../_images/OIDC_sequence_diagram.png]OIDC Sequence Diagram

Implement authentication with OpenID Connect (OIDC) securely in my web applications (RP)

Session handling

The OpenID Connect Provider (OP) typically creates a user session cookie so that it does not need to re-ask the user for their credentials too often across different web applications (RP). The expiration of the session depends on how the OP setup the session and the session may be forced to expire by the OpenID Connect Provider (OP) sooner than the cookie indicates on the user’s browser. This allows the OP to forcibly log the user out from the OP point of view. This premature termination of the user’s session with the OP will not, however, end the user’s session on the web application’s (RP’s) which they’ve logged into.

For that reason, it is important that the web application (RP) respects the following set of rules in regards to session handling:

	The web application (RP) must invalidate the user session when the ID token reaches expiration or sooner (the expiration time is generally a UNIX timestamp attribute named exp).

	If the user’s complete session duration is longer than 15 minutes, must re-check/update the ID token every 15 minutes or next user request (whichever comes first), to ensure that the user is still valid and has correct permissions.

	This ensures that access is revoked within 15 minutes in the event that the user’s account is disabled by the OpenID Connect Provider (OP).

	This issues a new ID token, with new attributes if they have changed.

	This may also renew the ID token expiration time.

	This is generally done with the parameter prompt=none while calling the OpenID Connect authorize endpoint. See also specifications [https://openid.net/specs/openid-connect-implicit-1_0.html#RequestParameters].

	This can also be done in the back-end to avoid a round-trip in the user agent (user’s web browser).

Other important security considerations

ID Token

	Always verify the id token signature.

	Always invalidate the user session when the associated ID token expires.

	Should update the contents of the id token by querying the OP regularly, before the ID token expires.

Authorization Code Grant

	Recommend using the authorization code grant. The authorization code grant requires a back-end server, reverse proxy, or similar server-side code that will generate an HttpOnly session cookie for the user, which means the access tokens cannot be intercepted in JavaScript within the user’s browser.

	Avoid using implicit grants for websites when possible. Single Page Applications (SPA) use implicit grants and receive tokens back in the user’s browser with no server-side component, which means it can be intercepted by malicious JavaScript running in the user’s browser. If using the implicit grant do not store the tokens in the browser’s storage (do not use localStorage). Instead, keep them in memory, which is much harder for attackers using a vulnerability in your website to steal the token.

Additional notes on Implicit grants

Implicit grants are inherently more dangerous and difficult to implement safely. We advocate against their usage entirely whenever possible.

Implicit grants are normally used for Single Page Applications (SPA) - these are static pages which are executed in the context of the user agent (i.e. web browser) instead of the web server. This means all data is seen and handled by the user agent and therefore the user’s browser.

This can become dangerous when the SPA is vulnerable to XSS or CSRF attacks (e.g. attacks where the attacker may retrieve the user’s tokens). Many SPAs tend to store the user’s id_token in the browser localStorage as a “proof of authentication” and access tokens which are then used to query otherwise private API endpoints. This is dangerous. Unlike browser cookies which can be set to HttpOnly, localStorage can be queried in JavaScript and also through an XSS vulnerability.

Any vulnerability in your SPA may leak the user’s tokens (with functional API access) that are used by your SPA. In addition, any other SPA that you do not control may also leak the same tokens. These tokens, if allowed for the same APIs, can be then used to compromise your application/APIs.

Authorization code grants prevent this problem by verifying everything on the web server and preventing the user agent from accessing this data. Note that for certain websites it may be convenient to perform the authorization code grant at the API level, so that your SPA does not need to manipulate tokens.

State parameter

When requesting authentication from the OpenID Connect provider (OP), always provide the state parameter.

This is a defense against CSRF [https://en.wikipedia.org/wiki/Cross-site_request_forgery] attacks as an attacker would need to know the state code/contents (similar to the CSRF synchronizer token [https://en.wikipedia.org/wiki/Cross-site_request_forgery#Prevention] used on websites)

Refresh token

Avoid using or storing refresh tokens. This is especially important for relying parties (RP) which are websites (as opposed to mobile apps for example, which may not always have network access). Refresh tokens never expire and thus are very powerful. These are usually not needed for user authentication flows.

Additional references

	https://tools.ietf.org/html/rfc7636 (Proof Key for Code Exchange by OAuth Public Clients)

	https://tools.ietf.org/html/rfc6749 (Oauth2 Authorization framework)

	https://tools.ietf.org/html/rfc7519 (JSON Web Tokens)

	JSON Identity Suite [https://ldapwiki.com/wiki/JSON%20Identity%20Suite]

	https://jwt.io/ (JWT token decoder)

	SCIM: System for Cross domain Identity management [http://www.simplecloud.info/]

	https://openid.net/ (Official documentation)

	https://openid.net/developers/libraries/ (OIDC integration libraries for different programming languages and tools)

	https://github.com/mozilla/mozilla-django-oidc/ (The django OpenID Connect library used on many Mozilla sites)

	https://auth0.com/docs/protocols (Auth0 documentation)

	https://developer.okta.com/docs/api/resources/oidc (Okta documentation)

	Authorization code grant vs Implicit grant [https://stackoverflow.com/questions/7522831/what-is-the-purpose-of-the-implicit-grant-authorization-type-in-oauth-2]

	OAuth2 Implicit Flow thread model [https://tools.ietf.org/html/rfc6819#section-4.4.2.1]

	OIDC vs OpenID vs OAuth2 [https://security.stackexchange.com/questions/44611/difference-between-oauth-openid-and-openid-connect-in-very-simple-term]

	https://nordicapis.com/api-security-oauth-openid-connect-depth/

	Where to store tokens in my SPA [https://auth0.com/docs/security/store-tokens]

 layout: default resource: true categories: [Guidelines,IAM] title: SAML description: How to use SAML securely and make user’s session experience better

layout: default
resource: true
categories: [Guidelines,IAM]
title: SAML
description: How to use SAML securely and make user’s session experience better

The goal of this document is to help understand the basics of how to securely implement Security Assertion Markup Language (SAML) [https://en.wikipedia.org/wiki/SAML] when authenticating and authorizing users.
All Mozilla sites and deployment should follow the recommendations below.
The Enterprise Information Security (Infosec) team maintains this document as a reference guide.

Just looking for code? Reference configuration and code for implementing SAML as described below is also available [https://github.com/mozilla-iam/testrp.security.allizom.org].
Additionally, Mozilla provides SAML single sign on support for Mozilla properties and access can be requested by following documentation here [https://mana.mozilla.org/wiki/display/SECURITY/SSO+Request+Form]

Common abbreviations & definitions

Abbreviation	Full and related names	Description
——————–	————————————————————————–	——-
Authentication	Login	The act of verifying a user identity, i.e. verify the user is who they say they are.
Authorization	role, groups, attributes, access control list, scopes	The act of granting access to specific resources (to an authenticated user, or bearer of a secret).
SAML	Security Assertion Markup Language	A standardized identity and authorization protocol for authentication that uses XML.
OIDC	OpenID Connect	A standardized identity layer for authentication that uses OAuth2 (not to be confused with OpenID which only provides authentication, or pure Oauth2 which only provides authorization). While OIDC uses OAuth2 for authorization, it also leverages (some would say, abuses) OAuth2 authorization to perform authentication tasks.
SP, RP	Service Provider, Relying Party, client, web application, web property	Generally a web application that wants to authenticate and eventually authorize access to data. SAML calls these SPs, OpenID Connect (OIDC) call them RPs. For conciseness, we refer to them as relying party (SP/RP) in this document.
IdP, OP	Identity Provider, OIDC Provider, authorization server	Provides authentication and authorization for service providers/relying parties (SPs/RPs). It may rely on itself, or another Identity Provider (IdP) (ex: the OP provides a front-end for LDAP, WS-Federation, OIDC or SAML).
Attributes, Scopes	role, groups, attributes, access control list, scopes	Access control information, groups, roles, attributes, etc. that are used by the relying party (SP/RP) to grant specific authorization/access permissions to a user.
SSO	Single Sign On	A SAML or OIDC Provider (OP) and set of relying parties (SPs/RPs) that provide a unique sign-on panel for users, and that coherently handle session information for the user.
JWT	JSON Web Tokens, id token	Base64 encoded, optionally signed, small and self-contained JSON documents that represent a possibly signed JSON message. The JSON message contains the issuer of the token, the subject (usually owner/user of the token), how the user authenticated, and for whom the token is intended to (audience).
Tokens	API keys, access token, refresh token	An opaque, unique secret string that is used to access protected resources, used by OpenID Connect (OIDC).
SCIM	System for Cross-domain Identity Management	A standardized schema and API for querying and managing user identities (attributes, etc.)
Assertion	Security Assertion	What SAML calls an assertion is an assurance that a user as been identified or authorized. It returns an XML-formatted assertion (usually signed) that informs the relying party (SP/RP) that the user is identified and/or possess a certain list of attributes.

SAML in a nutshell

See also OpenID_Connect Guidelines to understand the OIDC flows, which are similar to SAML.

SAML (Security Assertion Markup Language) is a protocol that allow web applications (also called service providers, relying parties, or SP, RP) to authenticate users with an external server called the Identity Provider (IdP). The IdP hosts a database of user credentials and attribute information.

In Mozilla’s setup, SAML is a front-end to an OpenID Connect Provider (OP). This means SAML requests are translated to OIDC requests back and forth. For the relying party (SP/RP), it looks like a regular SAML IdP, but internally everything is processed like an OIDC transaction.

The difference is that OIDC tokens are not surfaced and thus may not be directly used by a SAML relying party (SP/RP). This means all transactions must call a separate REST API directly, or use the SAML2.0 protocol directly. In particular, we recommend using the SAML passive authentication options to renew a user’s session without having to logging the user back in regularly.

Detailed SAML authentication flow

This sequence diagram is useful if you want to understand how SAML works, or need to modify a SAML library.

[image: ../../_images/SAML_sequence_diagram.png]SAML sequence diagram

Implement authentication with SAML securely in my web applications (SP/RP)

Session handling

The SAML IdP (or OpenID Connect Provider (OP) exposing a SAML interface) typically creates a user session cookie so that it does not need to re-ask the user for their credentials too often across different web applications (SP/RP). The expiration of the session depends on how the SAML IdP setup the session and the session may be forced to expire by the SAML IdP sooner than the cookie indicates on the user’s browser. This allows the SAML IdP to forcibly log the user out from the IdP point of view. This premature termination of the user’s session with the SAML IdP will not, however, end the user’s session on the web application’s (SP’s/RP’s) which they’ve logged into.

For that reason, it is important that the web application (SP/RP) respects the following set of rules in regards to session handling:

	The web application (SP/RP) must invalidate the user session when the SAML SubjectConfirmationData part of the assertion reaches expiration (NotOnOrAfter) or sooner (the expiration time is a UTC timestamp such as <saml:SubjectConfirmationData NotOnOrAfter="2016-12-22T00:09:09.891Z" Recipient="https://rp.example.net/saml/response"/>).

	If the user’s complete session duration is longer than 15 minutes, should re-check/update the assertion every 15 minutes or next user request (whichever comes first), to ensure that the user is still valid and has correct permissions. This is done by authenticating with SAML2 using the IsPassive parameter in the SAML AuthnRequest.

	This ensures that access is revoked within 15 minutes in the event that the user’s account is disabled by the SAML IdP.

	This renews the assertion expiration time, and provides new attributes if they have changed.

	If IsPassive is not supported, the session may expire after 24h, after careful investigation. This setup is however not recommended and is reserved for specific exceptions.

	The web application (SP/RP) can optionally provide a logout URL, which the SAML IdP can call to indicate if a user has logged out (so that the web application immediately know when to log the user out as well).

Additional references

	https://www.oasis-open.org/committees/download.php/35711/sstc-saml-core-errata-2.0-wd-06-diff.pdf (SAML2 Core specifications)

	SCIM: System for Cross domain Identity management [http://www.simplecloud.info/]

	https://auth0.com/docs/protocols (Auth0 documentation)

	SAML2 Session expiration [https://stackoverflow.com/questions/29508906/notonorafter-in-subjectconfirmationdata-and-conditions-and-sessionnotonorafter]

	https://samltool.io/ (Decoder for SAML Assertions)

 layout: default resource: true categories: [Guidelines, Risk] title: Likelihood Indicators description: A model for determining how security controls affect risk

layout: default
resource: true
categories: [Guidelines, Risk]
title: Likelihood Indicators
description: A model for determining how security controls affect risk

The goal of this document is to describe a methodology for determining what
effect on the likelihood component of risk a missing security control will have

Overview

Service risk is composed both of the impact when a risk is manifested as well as
the likelihood that the risk will manifest. Impact can be assessed in a
Rapid Risk Assessment
and is primarily based on the data which the service handles.
Likelihood on the other hand is primarily driven by the presence or absence of
security controls in the service.

What follows is a methodology for associating likelihood indicators with
security controls.

Meaning of the likelihood indicators

The likelihood indicator for a given security control is the likelihood that
a vulnerability in the service will be exploited in a calendar year due to the
absence of the security control.

The indicators use the Standard levels reference
and can be translated as:

	LOW likelihood : The absence of this security
control is unlikely to cause a risk to manifest. It may cause security
incident response to be slower or more difficult. This causes HIGH and MAXIMUM
impacts to result in MEDIUM risk.

	MEDIUM likelihood : The absence of this
security control may cause a risk to manifest in the coming year. This
security control is important but with additional supporting controls may not
be required. This causes MAXIMUM impacts to result in HIGH risk.

	HIGH likelihood : The absence of this security
control will probably cause a risk to manifest in the coming year. This
security control is important and should only be missing for LOW impact
services. This causes MEDIUM and HIGH impacts to result in HIGH risk and
MAXIMUM impacts to result in MAXIMUM risk.

	MAXIMUM likelihood : The absence of this
security control will cause a risk to manifest in the coming year. This
security control is required. This causes MEDIUM impacts to result in HIGH
risk. This causes HIGH and MAXIMUM impacts to result in MAXIMUM risk.

Determining the likelihood indicator for a security control

When determining the likelihood indicator for a security control consider

	How easy is it for a threat agent to determine the existence of a vulnerability

	How easy is it for a threat agent to determine that a control to protect
against the vulnerability is missing

	How easy is it for a threat agent to exploit a vulnerability in the service
when that control is missing

	To what degree do missing security controls make it easier to discover
vulnerabilities in the service

	Are there current ongoing attacks on other services which are protected by
this security control

	How often has the service suffered an incident due to this or this type of
missing control in the past?

The Reverse Engineering Method

This method involves thinking of hypothetical data being protected by the
security control, calculating the risks resulting from that data’s impact level
and the various possible likelihood indicator levels and looking for which
resulting risk matches best.

LOW likelihood

Impact	Risk
——-	——
LOW	LOW
MEDIUM	LOW
HIGH	LOW
MAXIMUM	MEDIUM

MEDIUM likelihood

Impact	Risk
——-	——
LOW	LOW
MEDIUM	MEDIUM
HIGH	MEDIUM
MAXIMUM	HIGH

HIGH likelihood

Impact	Risk
——-	——-
LOW	MEDIUM
MEDIUM	HIGH
HIGH	HIGH
MAXIMUM	MAXIMUM

MAXIMUM likelihood

Impact	Risk
——-	——-
LOW	MEDIUM
MEDIUM	HIGH
HIGH	MAXIMUM
MAXIMUM	MAXIMUM

Communicating the likelihood indicator

Likelihood indicators should be sent in the Service Mapper
format [https://github.com/mozilla/service-map/blob/master/models/v1/indicators/indicator.py#L61-L89]

 layout: default resource: true categories: [Guidelines,Risk] title: Rapid Risk Assessment (RRA) description: A rapid methodology to perform risk analysis and create a lightweight threat model.

layout: default
resource: true
categories: [Guidelines,Risk]
title: Rapid Risk Assessment (RRA)
description: A rapid methodology to perform risk analysis and create a lightweight threat model.

We all regularly use a risk based methodology when making decisions in day to day life, without thinking about it. The
Rapid Risk Assessment or Rapid Risk Analysis (RRA) methodology helps formalize this type of decision making and ensures
that the process is reproducible, consistent and the results are easy to communicate.

See also Assessing Security Risk for an introduction to risk and our processes related to
risk.

Rapid Risk Assessment

A typical Rapid Risk Analysis/Assessment (RRA) takes about 30 minutes. It is not a security review, a full
threat-model, a vulnerability assessment, or an audit. These types of activities may however follow an RRA if deemed
appropriate or necessary.

The main objective of the RRA is to understand the value and impact of a service to the reputation, finances,
productivity of the project or business. It is based on the data processed, stored or simply accessible by services.

Note that the RRA does not focus on enumerating and analyzing security controls. The RRA process is intended for
analyzing and assessing services, not processes or individual controls.

Preamble

Data is the most important item in risk management. Software, websites,
infrastructure, networks and people handle, process, exchange and store
data.

The RRA focuses on creating a summary of the risks associated with your
data. Key points:

	Quick! The RRA takes 30 to 60 minutes maximum.

	Very high-level. Details are for complete threat models. The RRA can become a complete threat model over time
though!

	Concise, readable. Short and with clear risk levels.

	Easy to update. Can be run during any phase of the project development and continuously updated.

	Informative. Collects risk impact and a data dictionary. Also collections information about how the service
functions.

	Let you know what to do. The RRA includes the list of recommendations from the security team with a priority for
each item.

This helps to make the following type of risk-based decisions:

	Is the security provided by a given platform appropriate to host a
specific classification of data?

	How much should we care about maintenance, etc?

	Is there anything obvious we should really look at fixing right now?

	Where should we focus our efforts to significantly increase the security or the service?

	Did we forgot anything, or had any blind spot we hadn’t though of?

Sample use scenario

Firefox accounts store user data:

	What happens if that data is disclosed to the world? What happens if the service goes down? What happens if the data is modified by someone unauthorized?

	Do these events put us at financial risk? Is our productivity affected? Is our reputation affected?

	What types of data does Firefox accounts handle? How sensitive is the primary type of data used by Firefox accounts?

The RRA risk table facilitates discovering the answers to these questions.

How-to: Request an RRA of your service

To manually request an RRA, please file a bug [https://bugzilla.mozilla.org/enter_bug.cgi?product=Enterprise%20Information%20Security&component=Rapid%20Risk%20Analysis] to our component. Please include basic information about the project, a diagram, any relevant links and 0-2 additional people to invite for the assessment.

How-to: Attending and running RRAs

When to run RRAs? What do I need to bring or do?

RRAs are designed to be created and updated as needed, at any time, with or without an associated meeting. That being
said, you should run the first RRA during the design or architecture phase of new services together with a trained risk
analyst.

It is also recommended to have these things available for the RRA creation:

	Name of a person or/and team responsible for the service.

	Data flow diagram.

	List the kind of data that will be processed or stored: secrets, credentials, public data, confidential data, and anything else that may be important for this service.

	An understanding of how the service works.

When NOT to run an RRA?

RRAs can only be run on services. If you have a question about a specific feature or design choice, and how it’s going
to impact other services: find which service your feature is tied to and see if there is already an RRA available.
Otherwise, request an RRA for that service, this will help us (and you) assess your feature or design choice!

Note on large services
Large services may be be split into multiple smaller services or sub-services that handle a specific type of data and
expose a limited set of features. This choice has to be made when running the RRA. If the sub-services are owned by
different teams, it is a strong indicator that multiple RRAs should be run.

Large services that cannot be split up not only lead to a complex assessment, but also may indicate that the service
itself needs to be re-designed in a more secure fashion.

What to focus on during an RRA?

	Getting value for the service owner. The service owner needs to understand what is most important to protect and
if they have any blind spot.

	Data. Fill in the data dictionary. You need to know most of the data the service will have access to, stored or
processed.

	Impact assessment. The RRA is the authority for impact levels and these are paramount. How bad can things get,
what’s the worse case scenario?

	Recording threat scenarios. What attack scenarios were considered? Would someone else understand it?

What to NOT focus on:

	Gathering security controls and figuring out how effective they are. Don’t do that! This information may be
recorded if it comes up but do not focus on it as this is very time consuming. If the service is considered risky,
specific processes can be recommended in the RRA recommendations section to assess specific controls separately.

	Likelihood, Security provided by service. Don’t spent much time there! It is very hard to assess likelihood in most
scenarios, and easy to get lost in “what if”. We have specific, separate processes to assess likelihood. Some quick
questions may still help though, such as “what’s the security history of this service?”

Guided process for risk analysts: Running your RRA in ~30 minutes

This is a guided example of how to run an initial RRA. You will:

	Invite the relevant people to a meeting.

	Help them figure out risk impacts and record everything in the RRA doc.

	Help them figure out the next steps.

	Make them feel like they own the RRA document (and they do!).

Before the initial RRA meeting

	Ensure no previous RRA exist; if it does, just enhance the current RRA document

	Create a copy of the
template [https://drive.google.com/open?id=1QMRdBLlQYqbn5lMmrOIBwS55Yh9fIYNp4dO3-HMyiyk].

	Invite 1 or 2 members (product/service owners, lead engineers, etc.) related
to the service with a bit of technical knowledge.

	Ensure the invitees attempt to bring a data flow diagram and have an understanding of the data the service stores or
processes.

	You do not want more than 4 or 5 people total as this will slow down the RRA significantly. Most RRAs are
run 1 on 1 (2 people total).

	Make sure everyone invited has edit rights to the document, and
have the document opened in front of them when the RRA starts (you can also just share your screen).

	If this is anyone’s first RRA, ensure they understand the goals of the RRA and give them a short introduction to
what the different steps will be. This both help them follow, and show that you have control of the meeting (see
next section on time management).

Initial RRA meeting

Time management - take control

You will be responsible for the time management when running the first RRA for a service.
This means, you will sometimes have to cut a discussion short and be assertive: we have a tendency to jump directly to
discussing security controls during risk discussions. While valuable, this is not the initial purpose of the RRA, and
controls can be better discussed once the impacts have been clearly defined.

Example red flags that indicate you should re-focus the current discussion:

	The discussion languishes (>1 minute) around “how to mitigate this very issue” or “we’re doing X to ensure this never happens”.

	The discussion focuses on process preferences, changes, etc. instead of just filing the RRA document.

	The discussion about how the service works takes too long (>15 minutes) and the owner has to lookup every single
detail (you only need an overview at this stage, or the owner has to come back when they know what service they want
to look at).

A good tip is to reserve 60 minutes of RRA time in the calendar, and plan to run the RRA for only 30 minutes.
This leaves you with some room for error, and handle services that weren’t well understood by their owners. Best case
scenario, everyone will be happy when you cut the meeting short after only 30 minutes. In any case, always watch the
clock! Having to use more than 60 minutes for the initial RRA is considered a failure and should not happen.

Running the RRA meeting

Note: If this is your first RRA, ensure that someone who has run RRAs previously is present to help you. It is good
to have attended multiple RRAs before starting your own. Your experience and understanding is key to running a
successful RRA that will help the teams and keep the service safe.

RRA Utilities: There is a menu at the top of the document called the “RRA Utilities” menu. Use it to set risk
impact, levels, data classification and marking the RRA as reviewed. Do use it as our scripts rely on this to copy RRAs
to our RRA API.

Metadata (1min)

	Fill in the service name

	Fill in the service owner: ask whom would be taking the decision to turn the service off in case of an incident, if
it’s unclear. That is the service owner.

	Lookup the owner’s closest director or VP and add this as well.

	Leave “service data classification” and “highest risk impact” empty for now.

Service Notes (5min)

This is where you put any notes that you feel are relevant to the understanding of the service, security, etc.
Ask the service owner what the service does and a little bit of how it works. Ensure that you understand the service
well.
You should be able to reformulate what the service does, and the service owner to agree on your formulation.
Generally, you want to copy a diagram of some sort and have links back to the RRA request bug, and the service’s own
website (which may be a vendor). This is also a good time to mention the vendor questionnaire [https://docs.google.com/document/d/1idP1gGuEgeinoL6m_hsZ8lQ8wz64BeI-S53n_9kwMkU/edit?usp=sharing]
if this is a vendor and it hasn’t been filled in.

Feel free to go back to this section at any time to add any further notes.

Data Dictionary (5-10 minutes)

We want to know about all data the service will process or store (and not just store). Any data the service can touch
or see is to be considered.
You will need to ask the team or service owner about what kind of data the service processes or stores. Here are some
examples:

	Specific configuration data

	User or service credentials, secrets

	User data

	etc.

Set the data classification for each data type in the dictionary, such as “PUBLIC”, “STAFF CONFIDENTIAL”, etc. by using
the “RRA Utilities” menu.
Mozilla uses standard classification levels [https://wiki.mozilla.org/Security/Data_Classification].

When you figure out what the bulk or the most important data is, set this as the “Service Data Classification” in the
RRA metadata.

Threat Scenarios (5-10 minutes)

This is where we discuss potential attack scenarios and figure out how bad things could go (worse-case scenario).
The RRA document itself contains tips about this section as well.
We do not record the threat types, attacker types, etc. in this model in order to save time.
Think about the easiest attack vectors (“threat scenarios”). While we focus on recording impact, you should also ask if
anything already happened and make a note if so, as this indicates a possible higher likelihood for the impact to occur.

Record all results and make sure that you set an impact level (use the “RRA Utilities” menu for this)

Confidentiality: What happens if all the data is disclosed to the world?

Integrity: What happens if the data is incorrect, misleading, website defaced, etc.?

Availability: What happens if the data or service is missing, deleted, or currently unreachable?

For each, run through these questions and assign an impact level if appropriate:

	Reputation issues

	Do we get in mainstream news? (MAXIMUM impact)

	Do we get in the technical news? (HIGH impact)

	Do we receive emails, bugs, twitter messages, etc? (MEDIUM impact)

	Not much? (LOW impact)

	Productivity issues

	Are small teams occupied on dealing with the issue for

	Less than 24h? (LOW impact)

	Less than 2 days? (MEDIUM impact)

	Less than a week? (HIGH impact)

	More? (MAXIMUM impact)

	How about large teams, or the entire company, or our user-base?

	Less than 2h? (LOW impact)

	Less than 24h? (MEDIUM impact)

	Less than 2 days? (HIGH impact)

	More? (MAXIMUM impact)

	Financial issues?

	Would it cost money? How much?

Enhance these scenarios, eventually to create a complete threat model if the assessed impacts are HIGH or MAXIMUM and
if further security work is required, or the RRA is revisited.

Additional tips

	Whenever the productivity impact is HIGH or MAXIMUM, there is probably also a financial impact due to the cost of the
workforce being impacted.

	Financial risk is sometimes hard to define, in particular when tied to contracts. When in doubt, skip it.

	If you have any HIGH or MAXIMUM impacts, propose that a more complete threat model and pen-test be run.

	Educate the project owners and lead developers of the project about the meaning of these risks and how the RRA can
help them make decisions such as which operational environment to select, what technologies to use, and how much
effort to put into securing the project.

Recommendations (5 minutes)

While the RRA is not meant as a complete review, recommendations do come
up and this is a great time to have a quick 5 minute chat about these.

	Ensure all recommendations that came up (from you or the team) are mentioned here. It’s also ok to fill them as you
go!

	Use the “RRA Utilities” menu to set an impact for the recommendation (“if followed, how much would it help the
service?”) as this allow service owners to prioritize work.

	Ensure logging and access control have been mentioned. Can these be improved? Should we alert on events?

	Does this service have an incident response plan defined?

	Is the service using SSO for login?

	Is there a web site that can be assessed? If so, you can file a vulnerability assessment request directly.

	Did the service follow the security checklist and
principles?

Wrapping up

	Make sure you’ve filled the “Service Data Classification” up top according to your data dictionary (what you consider
to be either the bulk of the data or the most important data is your classification)

	Make sure you’ve also filled the “Highest Risk Impact”, this is basically the high impact recorded in the threat
scenarios.

	Double check with the team:

	Present the current risk impact and ask if they think it’s reasonable.

	Present the current recommendations and ask if they think anything’s missing and what they should start with.

	Ask the team if there’s any additional security related question they want to ask or if anything wasn’t covered.

	Add Google docs comments to the recommendations and assign the comment to the service owner, to ensure they’ve also
been notified by email.

	Make sure you have marked the RRA as reviewed by yourself in the “RRA Utilities” menu.

Reference documents and similar work

	https://binary.protect.io/workcard.pdf

	https://en.wikipedia.org/wiki/ISO_31000

	https://web.archive.org/web/20141118061526/http://www.riskmanagementinsight.com/media/docs/FAIR_introduction.pdf

RRA Links

	Current RRA requests [https://mzl.la/2c4a09F]

	New RRA
request [https://bugzilla.mozilla.org/enter_bug.cgi?product=Enterprise%20Information%20Security&component=Rapid%20Risk%20Analysis]

	New Vulnerability
Assessment [https://bugzilla.mozilla.org/enter_bug.cgi?product=Enterprise%20Information%20Security&component=Vulnerability%20Assessment]

	RRA Support code for the Google Docs template [https://github.com/mozilla/infosec.mozilla.org/blob/master/misc/RRACodeMaster.js]

	RRA Parsing code (convert to spreadsheet/db) for the Google Docs template [https://github.com/mozilla/infosec.mozilla.org/blob/master/misc/RRA2Spreadsheet.js]

 layout: default resource: true categories: [Guidelines,Risk] title: Scoring and other levels description: Standardized scoring and other levels that aren’t directly representing risk levels.

layout: default
resource: true
categories: [Guidelines,Risk]
title: Scoring and other levels
description: Standardized scoring and other levels that aren’t directly representing risk levels.

The goal of this document is to ensure consistency, coherence between security documents. All Mozilla security
documentation should follow the recommendations below.

Note Risk levels are not described here, but are mandatory when describing risk and documented in
Standard Levels.

See also Assessing Security Risk for an introduction to risk and our processes related to
risk.

Scoring and other levels

RFC2119 handling recommendation levels

See also RFC 2119 [https://www.ietf.org/rfc/rfc2119.txt] for a formal
definition.

OPTIONAL: This is up to the reader to choose to follow or not to follow this recommendation.

SHOULD: Should is very close to “must do” however, exceptions may be granted after discussion.

MUST: This must be done, is required, mandatory - there is no exception.

Recommended configuration states

These are used to match recommended configuration states. It describes
set of documentation configuration state that we recommend using,
depending on your use-case.

Modern:

	State of the art configuration from a security point of view.

	Generally better for security sensitive services.

	Fewer server/clients may be compatible.

Intermediate:

	Usually the default configuration we recommend.

	Reasonable configuration that we recommend while covering the largest amount of clients.

	Fewer server/clients may be compatible, though the majority should be compatible with this configuration.

Old:

	Configuration that you may only use if other configurations cannot be followed for technical reasons

	Relatively safe - but must be moved to the intermediate configuration above when possible.

	Generally supports the largest amount of servers/clients.

Document Status Codes

These are used in the header of every document to clearly signify its
current status.

	Level

	Expectations

	READY

	
	Means the document is ready for user consumption and is expected to be followed.

	DRAFT

	
	Means the document is in progress or does not cover all cases.

	You may follow this document for guidance, at your own risk.

	NOT READY

	
	Means the document should not be followed right now.

Pass/fail tests

Tests are not levels per se. When possible, they either pass or fail.
It’s similar to a walk/don’t walk traffic sign.

	Level

	Coding rationale

	Expectations

	PASS

	
	Green generally means acceptance, allowance such as the traffic sign "Walk".

	
	Means a test successfully passed.

	There is no "almost passed": test must completely pass.

	FAIL

	
	Red generally means refusal, denial, such as the traffic sign "Don't walk".

	
	Means a test did not pass.

Scoring levels

Scores are used to gamify usage of security controls and features. Note
these levels do not directly signify risk, and are instead intended to
provide a grade for a particular objective. The mapping to objective can
be used as a base to create a mapping to
Standard Levels.

These levels are used, for example, on the [https://observatory.mozilla.org](Mozilla Observatory).

The letter E is not used in the grades in order to keep scores
concise and voluntarily less granular (see expectations for each grade
below). The use of + and - modifiers is allowed if necessary.
These are added to represent going slightly above or below expectations.

	Level

	Expectations

	A+, A, A-

	Highest possible grade.

	Support all features and controls.

	All intentions of objective met.

	B+, B, B-

	
	Supports most important features and controls.

	Some outliers need attention.

	Most intentions of objective met.

	C+, C, C-

D+, D, D-

	Score may moderately contribute to risk.

	Potential service blocker.

	Needs attention and features need to be enabled/controls added.

	Minimal to moderate intentions of objective met.

	F

	Lowest possible grade, score may greatly contribute to risk.

	Zero to minimal intentions of objective met.

	Immediate attention and action are required.

	Score likely to block the service.

 layout: default resource: true categories: [Guidelines,Risk] title: Standard Levels description: Standardized levels for security risk, effort and other measurements.

layout: default
resource: true
categories: [Guidelines,Risk]
title: Standard Levels
description: Standardized levels for security risk, effort and other measurements.

The goal of this document is to ensure consistency, coherence between
security documents. All Mozilla security documentation must follow the
recommendations below.

This document establishes standard level conventions, in particular:

	Level color coding

	Name or name schemes

	Level expectation

Looking for scores instead? While all document must still express risk using the standard levels, you can refer
to the Scoring and other levels guideline for scoring, pass/fail, RFC2119 definitions,
document readiness, etc.

Standard Documentation Levels

We strongly emphasize on presenting risk levels in all documents, pages, etc. It allows for a common representation of
risk regardless of tools and other nomenclature used. If you use a scoring system for example, and your score is F, you
are at higher risk - but it could mean different things on different tools. For this reason, the risk levels are the
most important levels and must always be followed and present.

See also Assessing Security Risk for an introduction to risk and our processes related to
risk.

Standard risk levels definition and nomenclature

The risk levels also represent a simplified ISO 31000 equivalent (and are non-compliant with ISO 31000). These levels
are also used to display importance, effort, risk impact, risk probability and any risk related level.

	Risk Level

	Expectations

	Rationale

	MAXIMUM Risk
HTML Color code #d04437

	This is the most important level, where the risk is especially great.

	Attention: Full attention from all concerned parties required.

	Impact: High or maximum impact.

	Effort: All resources engaged on fixing issues. Following standard/guidelines is required.

	Risk acceptance: Rarely accepted as residual risk, must be discussed, and must be mitigated or remediated.

	Exception time (SLA): Recommend fixing immediately.

	
	Red signifies "most important".

	Maximum is a level. Critical is not.

	HIGH Risk
HTML Color code #ffd351

	
	Attention: Full attention from all concerned parties required.

	Impact: Medium, high or maximum impact.

	Effort: Some key resources engaged on fixing the issue. Following standard/guidelines is required.

	Risk acceptance: Risk must be discussed, and must at least be mitigated.

	Exception time (SLA): Recommend remediation within 7 days.

	
	Yellow generally signifies "warning". In our case it correlates to "important".

	MEDIUM Risk
HTML Color code #4a6785

	
	Attention: Attention from all concerned parties.

	Impact: Low, medium or high impact.

	Effort: Best effort. Following standard/guidelines is required.

	Risk acceptance: Risk should be discussed, and at least mitigated.

	Exception time (SLA): Recommend remediation within 90 days.

	
	Blue is calm and neutral.

	LOW Risk
HTML Color code #cccccc

	
	Attention: Expected but not required.

	Impact: Low or medium impact.

	Effort: Best effort and best practices expected.

	Risk acceptance: Risk may often be accepted as residual risk.

	Exception time (SLA): Indefinitely.

	
	Gray is a low contrast color, which signifies not too important. It's also less catchy.

	Green is not used as green means "ok to do", which is not a level.

	UNKNOWN Risk
HTML Color code #ffffff

	
	Data collection is expected.

	This level is expected to change to one of the other levels.

	
	White represent the emptiness/lack of data.

This is not a true level, it is used when there to represent that we do not have enough data to correctly assess the level (i.e. data collection work is required).

Note: communicating the risk of not knowing is challenging and prone to failure, in particular when once data has been gathered, the risk appears to in fact be low.

This concept is also known as "trust, but verify" - i.e. unknown does not distrust (by assign it a higher risk) the service, user, etc. by default.

Examples of usage

LOW Risk

	Attention Service owner or delivery team may look at it, through email or other means.

	Effort Flip a configuration switch, change a password, lookup a document, etc.

	Risk acceptance Accept risk of leaking non-sensitive data as peer-review process is light.

MEDIUM Risk

	Attention Service owner or delivery team must be informed via bug, document, etc.

	Effort Take a group decision, create standards, lookup statistics, manual upgrades, etc.

	Risk acceptance Mitigate the risk of attackers accessing the admin panel by using SSO.

HIGH Risk

	Attention Ensure service, product owner is aware via bug and pings.

	Effort Implement a new security control, code a new feature, change all company user passwords, etc.

	Risk acceptance Hotfix to mitigate within the next few days, eventually turn off if it takes too long.

MAXIMUM Risk

	Attention Ensure service,product, capability owner is aware via bug and pings.

	Effort Implement a new security design/change product design, etc.

	Risk acceptance Turn service off/put it behind VPN until fixed/ASAP.

	Your site scored
C to the HTTP observatory tests, and it is at MEDIUM
Risk.

	You have 1 immediately exploitable RCE vulnerability of maximum impact and are at MAXIMUM
Risk.

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/Ssh_forwarding.png
ssh'|
auth

request
1

ssh connectio

Tamphost

Sshca

some server

Sshcanme

=

some other
server

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 <no title>

_images/OIDC_sequence_diagram.png
Authentication Sequence with OpenID Connect

User's Browser (User-Agent) Website (Relying Party) oIDC Provider (OP) LDAP, GitHub, etc. (1dP)
1
User visits hitps://rp.example. netﬁ
T
1

GET https://rp.example.net/

GET htps://op.example.nety.well-known/openid-configuration

ISON meta-data document

S N S

JSON meta-data document:
‘token_endpoint': *https.//op.example.net/oauth/token’,

‘authorization_endpoint"*https://op.example.net/authorize?...",

|
|
|
|
|

>
I
r
|
e
I
|
|
|
|
|
|
|
I
|
|
|
I
|
|
|

User is authenticated to https://rp.example. netH

GET https://rp.example.net/

S S

rp.example.net's page is displayed

i

|

|

|

|

|

|

|

|

| i

! [!

i i

e 302 Redirect to https://op.example.net/authorize?!....] |

| 1

[GET jautharize parameters I

i| state=xxx (CSRF protection) i

i| hance=xxx (server-side replay protection) i

1| scope=openid emal profile i

{| Fedrect uri=nitps://fp.example.nat/callback (OP will redirect here) i

i| response. type=code i

|| client i (RP identifier) i

| i

i i i

! GET nitps://op.example.net/authorize?L...] >

i T l

i Show hosted login page i

* T 1

| i i

t Performs login N

i T |

} } |_authenticate user (via OIDC or other means)

| | I 1

| | . return user attributes 1

| I 1

e 302 Redirect to https://rp.example.net/callback?L...] (redirect_uri) ! |

i i i |

} GET /callback parameters: - | } :

| | i 1

| | i 1

| I I 1

! GET hitps://rp.example.net/callback?(...] H‘ ! !

r i |

| ! POST https://op.example.net/oauth/token ; |

»
| i I 1
] | PoST /csutntoken parameters: | |
cient
! | client_secret=xxx (secret identifying the RP to the OP) | |
! H arant type-authorization_code ! !
Codes

| I| Statemon 1 1

| | i 1

| | i 1

! ! JSON {"base64(id_token)", "access_token", ...} | |

| e = = 1 1

| | i |

| I 350N Document 1 |

i | | i

| I rid_token': ADNgUMIaKeYpSW==... i 1

| I| aceess token": e, i 1

1 I test@rp.example.net, | 1

! || vatwributear: | \

| i| e i |

| I i 1

| | i 1

! | Veriy id_token signature is valid, signed by OP ! !

| i 1

| i |

e 302 Redirect hitps://p.example-net/ i |
i 1
i 1
i 1
i 1
I |
i |
i |
i |
i 1
i 1

i
L
I
|
i
I

15 minutes later... (session require refresh)

! GET https://rp.example.net/

T

|

>

| |

1 302 Redirect to htps://op.example net/authorizeZprompt=nonel..] _|
i

|

1
GET https://op.example.net/atithorize?prompt=none...]
i

N

silently re-authenticate user

return new/current user attributes

1
| |
| |
1 |
1 | g etum new/eurrent user attributes |
1 |

1

302 Redirect to https://rp.example.net/callback?(...] (redirect_uri)

[«

User session, expiration and profile attributes are refreshed]

rp.example.net's page is displayed

:

I

‘
: :
. :
‘ ‘
| |

_images/SAML_sequence_diagram.png
Authentication Sequence with SAML

User's Browser (User-Agent) Website (Relying Party/Service Provider) SAML Provider (SAML "IdP"/OF) LDAP, GitHub, etc. (True 1dP)

T
|

User visits https: rp.example.net to perform login BI

GET https:rp.example.net/

|
|
|
|
|
g
| GET https:rp.example.net/login?ReturnTo=https: rp.exam